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Abstract
Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing
and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running
inference with a previously-trained model. The potential benefits are multifold: inference is typically orders of magnitude
faster than solving a new instance of a difficult optimization problem, deep learning models can be made robust to noise
and corruption, and the trained model may be re-used for other tasks, e.g. through transfer learning. In this paper, we cast
the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric
information directly from raw 3D face scans. We introduce Shape-My-Face (SMF), a powerful encoder-decoder architecture
based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip
connections, and a specialized mouth model that we smoothly integrate with the mesh convolutions. Compared to the previous
state-of-the-art learning algorithms for non-rigid registration of face scans, SMFonly requires the raw data to be rigidly aligned
(with scaling) with a pre-defined face template. Additionally, our model provides topologically-sound meshes with minimal
supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and
can generalize to previously unseen datasets. We extensively evaluate the quality of our registrations on diverse data. We
demonstrate the robustness and generalizability of our model with in-the-wild face scans across different modalities, sensor
types, and resolutions. Finally, we show that, by learning to register scans, SMF produces a hybrid linear and non-linear
morphable model. Manipulation of the latent space of SMF allows for shape generation, and morphing applications such as
expression transfer in-the-wild. We train SMF on a dataset of human faces comprising 9 large-scale databases on commodity
hardware.
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1 Introduction

3D shapes come in a variety of representations, including
range images, voxel grids, point clouds, implicit surfaces,
and meshes. Human face scans, in particular, are often given
as either range images, ormeshes, but typically do not share a
common parameterization (i.e., the output of the 3D scanner
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does not typically have a fixed connectivity, sampling rate
etc.). Fundamentally, this diversity of representations is only
a by-product of the inability of computers to represent con-
tinuous surfaces, but the latent geometric information to be
represented is the same. In practice, this poses a challenge:
two surfaces represented with two different parameteriza-
tions are not easily compared, which makes exploiting the
geometric information difficult. Finding a shared representa-
tionwhile preserving the geometry is the taskof dense surface
registration, a cornerstone in both 3D computer vision and
graphics (Amberg et al. 2007; Salazar et al. 2014).

The design and construction of a shared shape representa-
tion is often implemented by means of a common template,
which has a predefined number of vertices and vertex con-
nectivity. After choosing the common template, a fitting
method is implemented to bring the raw facial scans in dense
correspondence with the chosen template. The use of a com-
mon template is a crucial step towards learning a statistical
model of the face shape, also know as 3DMorphableModels
(3DMMs) (Blanz and Vetter 1999; Booth et al. 2016), which
is a very important tool for shape representation and has been
used for a wide range of applications spanning from 3D face
reconstruction from images (Blanz and Vetter 2003; Booth
et al. 2018b) to diagnosis and treatment of face disorders
(Knoops et al. 2019; Mueller et al. 2011).

Arguably, the current methods of choice for establishing
dense correspondences are variants of Non-rigid Iterative
Closest Point (NICP) (Amberg et al. 2007), and non-rigid
registration approaches whose regularization properties are
defined by statistical (Cheng et al. 2017) and non-statistical
(Lüthi et al. 2018) models. The application of deep learning
techniques to the problem of establishing dense correspon-
dences was only recently possible after the design of proper
layered structures that directly consumes point clouds and
respect the permutation invariance of points in the input data
(e.g., PointNet (Qi et al. 2017a)).

To the best of our knowledge the only technique that tries
to solve the problem of establishing dense correspondences
on unstructured point-cloud data and learning a face model
on a common template has been presented inLiu et al. (2019).
The method uses a PointNet to summarise (i.e., encode) the
informationof anunstructured facial point cloud.Then, fully-
connected layers (similar to the ones used in dense statistical
models (Blanz and Vetter 1999; Booth et al. 2016)) are used
to reconstruct (i.e., decode) the geometric information in the
topology of the common template. In this paper, we work on
a similar line of research and we make a series of important
contributions in three different areas. In particular,

– Network architectureWe propose architectural modifi-
cations of the point cloud CNN framework that improve
on restrictions of Qi et al. (2017a). That is, in order
to avoid having to adopt heuristic noise reduction and

cropping strategies we incorporate a learned attention
mechanism in the network structure. We demonstrate
that the proposed architecture is better suited for in-the-
wild captured data. Furthermore, we propose a variant
of PointNet better suited for small batches, hence able
to consume higher resolution raw-scans. Our morphable
model part of the network (i.e., the decoder) comprises
of a series of mesh-convolutional layers (Bouritsas et al.
2019; Gong et al. 2019) with novel (in the mesh process-
ing literature) skip connections that can capture better
details and local structures. Finally, our network struc-
ture is also considerably smaller than the state-of-the-art.

– Engineering/Implementation One of the major chal-
lenges when establishing dense correspondences in raw
facial scans is the large deformations of the mouth area,
especially in extreme expressions. We propose a very
carefully engineered approach that smoothly incorpo-
rates a statistical mouth model. We demonstrate our
method captures the mouth area very robustly.

– Application Our emphasis in this work is on robustness
to noise in the scans (e.g. sensor noise, background con-
tamination, and points from the inside of the mouth),
compactness of themodel, and generalization. Themodel
we develop should be readily usable on, e.g., embed-
ded 3D scanners to produce both a registered scan and
a set of latent representations that can be leveraged in
downstream tasks. We present extensive experiments to
demonstrate the power of our algorithm, such as expres-
sion transfer and interpolation between in the wild scans
across modalities and resolution. One of the major out-
comes of our paper is a novelmorphablemodel trained on
9 diverse large scale datasets, which will be made public.

Figure 1 shows some test textured scans and their correspond-
ing registrations and attention masks.

1.1 Structure of the Paper

We provide an extensive summary of prior published work
in Sect. 2, covering relevant areas of the morphable mod-
els, registration, and 3D deep learning literature. Section 3
is dedicated to reviewing the current state of the art model,
which we use as a baseline in our experiments, and to high-
light the limitations and challenges we tackle. We introduce
our model, Shape My Face (SMF) in Sect. 4, and provide
detailed descriptions of its different components, how they
provide solutions to the challenges identified in Sect. 3, and
how they allow us to frame the registration task as a surface-
to-surface translation problem. We also introduce our model
trained on a very large dataset comprising 9 large human
face scans databases. For the sake of clarity, we split our
experimental evaluation into two parts. Section 5 studies the
performance of SMF for registration, and presents a statis-

123



2682 International Journal of Computer Vision (2021) 129:2680–2713

Fig. 1 Sample test scans and their registration. Left to right: textured mesh, input point cloud sampled uniformly from the mesh (black) and the
attention mask predicted by the model (green), registration, and heatmap of the surface error

tical analysis of the model’s stability, as well as an ablation
study. Section 6 evaluates SMF on morphable model appli-
cations and studies properties of the latent representations; in
particular, in Sect. 6.4we evaluate SMFon surface-to-surface
translation applications entirely in the wild.
Notations Throughout the paper, matrices and vectors are
denoted by upper and lowercase bold letters (e.g., X and
(x), respectively. I denotes the identity matrix of compatible
dimensions. The i th column ofX is denoted as xi . The sets of
real numbers is denoted byR. A graph G = (V ,E ) consists
of vertices V = {1, . . . , n} and edges E ⊆ V × V . The
graph structure can be encoded in the adjacency matrix A,
where ai j = 1 if (i, j) ∈ E (in which case i and j are
said to be adjacent) and zero otherwise. The degree matrix
D is a diagonal matrix with elements dii = ∑n

j=1 ai j . The
neighborhood of vertex i , denoted by N (i) = { j : (i, j) ∈
E }, is the set of vertices adjacent to i .

2 RelatedWork

Although primarily a fast registration method with a focus
on generalizability to unseen data, our approach also makes
important progress towards learning an accurate part-based
non-linear 3D morphable model of the human face, as well
as a generative model with applications to surface-to-surface
translation. We first review the relevant literature across the
related fields. Then, we devote Sect. 3 to exposing the limi-
tations of the current state of the art algorithm that motivate
the choices made in this work.

2.1 Surface Registration and Statistical Morphable
Models

Surface registration is the task of finding a common param-
eterization for heterogeneous surfaces. It is a necessary

pre-processing step for a range of downstream tasks that
assume a consistent representation of the data, such as statis-
tical analysis and building 3Dmorphable models. As such, it
is a fundamental problem in 3D computer vision and graph-
ics.

2.1.1 Surface Registration

Two main classes of methods coexist for surface registra-
tion. Image-based registration methods first require finding a
mapping between the surface to align and a two-dimensional
parameter space; most commonly, a UV parameteriza-
tion is computed for a textured mesh, typically using a
cylindrical projection. Image registration methods are then
applied to align the unwrapped surface with a template,
for instance using optical flow analysis (Horn and Schunck
1981; Lefébure and Cohen 2001), or thin plate spline warps
(Bookstein 1989). UV-space registration is computationally
efficient and relies on mature image processing techniques,
but the flattening step unavoidably leads to a loss of informa-
tion, and sampling of theUVspace is required to reconstruct a
surface. For this reason, the secondmain class of surface reg-
istration methods operates directly in 3D, avoiding the UV
space entirely. Prominent examples include the Non Rigid
Iterative Closest Point (NICP) method (Amberg et al. 2007),
a generalization of the Iterative Closest Point (ICP) method
(Chen and Medioni 1991; Besl and McKay 1992) that intro-
duces local deformations, or the Coherent Point Drift (CPD)
algorithm (Myronenko et al. 2007; Myronenko and Song
2010). NICP operates on meshes and solves a non-convex
energy minimization problem that encourages the vertices of
the registered mesh to be close to the target surface, and the
local transformations to be similar for spatially close points.
Due to its non-convex nature, NICP is sensitive to initial-
ization, and is most often used in conjunction with sparse
annotations (i.e. landmarks for which a 1-to-1 correspon-
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dence is known a priori). Similarly, CPD also encourages the
motion of neighboring points to be similar, but operates on
point clouds and frames the registration problem as that of
mass matching between probability distributions. As such,
it is closely related to optimal transport registration (Feydy
et al. 2017). We refer to relevant surveys (van Kaick et al.
2011; Tam et al. 2013) for a more complete review of non-
deep learning based surface registration methods.

2.1.2 Linear, Multilinear, and Non-linear Morphable Models

Linear morphable models for the human face were first intro-
duced in the seminal work of Blanz and Vetter (1999). The
authors proposed to model the variability of human facial
anatomy by applying Principal Component Analysis (PCA)
(Pearson 1901; Hotelling 1933) to 200 laser scans (100 male
and 100 female) of young adults in a neutral pose. Scanswere
aligned by image registration in the UV space with a regu-
larized form of optical flow. The resulting set of components
forms an orthogonal basis of faces that can be manipulated to
synthesize new faces.Amberg et al. (2008) extended the PCA
approach to handle expressions for expression invariant 3D
face recognition, using scans registered directly with NICP
(Amberg et al. 2007). Patel and Smith (2009) introduced
the widely-used Basel Face Model (BFM), also trained on
200 scans registered with NICP. It is only with the work of
Booth et al. (2016, 2018a) that a morphable model trained
on a large heterogeneous population, known as the Large
Scale Face Model (LSFM) was made available. The authors
use the BFM template and a modification of the NICP algo-
rithm, along with automated pruning strategies, to build a
high quality model of the human face from almost 10000
subjects. LSFM is trained on neutral scans only, but can be
combined with a bank of facial expressions, such as the pop-
ular FaceWarehouse (Cao et al. 2014).

Multilinear extensions of linear morphable models have
been considered as early asVlasic et al. (2005)where a tensor
factorization was used to model different modes of variation
independently (e.g., identity and expression) with applica-
tions to face transfer, and refined by Bolkart and Wuhrer
(2015). However, the multilinear approach requires every
combination of subject and expression to be present exactly
once in the dataset, a requirement that can be both hard to
satisfy and limiting in practice. Salazar et al. (2014) proposed
an explicit decomposition into blendshapes as an alternative.
In Li et al. (2017), the authors propose to combine an artic-
ulated jaw with linear blending to obtain a non-linear model
of facial expressions.

2.1.3 Part-Based Models

Besides a global PCA model, Blanz and Vetter (1999) also
presented a part-based morphable model. The authors man-

ually segmented the face into separate regions and trained
specialized 3DMMs for each part, that can then be morphed
independently. The resulting model is more expressive than
a global PCA would be, and is obtained by combining the
parts using amodification of the image blending algorithm of
Burt and Adelson (1985). De Smet and Van Gool (2011) and
Tena et al. (2011) showed manual segmentation may not be
optimal, and that better segmentation can be defined by sta-
tistical analysis. Tena et al. (2011) designed an interpretable
region-based model for facial animation purposes.

Part-based models also appear when attempting to rep-
resent together different distinct parts of the body. Romero
et al. (2017) model hands and bodies together by replacing
the hand region of SMPL (Loper et al. 2015) with a new spe-
cialized hand model called MANO. Joo et al. (2018) present
the Frankenstein model, a morphable model of the whole
human body that combines existing specialized models of
the face (Cao et al. 2014), body (Loper et al. 2015), and a new
artist-generatedmodel for hands. Themodel’s parameters are
defined as the concatenation of all the parts’ parameters. The
final reconstruction is obtained by linear blending of the ver-
tices of the separate parts using a manually-crafted matrix.
The final model has fewer vertices than the sum of its parts,
and the parts were manually aligned. As per the author’s own
description, minimal blending is done at the seams.

In Ploumpis et al. (2019, 2020), a high-definition head and
face model is created by blending together the Liverpool-
York Head model (LYHM) (Dai et al. 2017) and the
Large-Scale FaceModel (LSFM) (Booth et al. 2018a).While
LYHMincludes a facial region, replacing itwithLSFMoffers
more details. Two approaches are proposed to combine the
models smoothly. A regression model learned between the
two models’ parameter spaces, and a Gaussian Process Mor-
phable Model (GPMM) approach (Luthi et al. 2018) where
the covariance matrix of a GPMM is carefully crafted from
the covariance matrices of its parts using a weighting scheme
based on the Euclidean distance of the vertices to the nose tip
of the registered meshes (i.e. the outputs of the head and face
models). A refinement phase involving non-rigid ICP further
tunes the covariance matrix of the GPMM.

We refer the interested reader to the recent review of Egger
et al. (2020) for more information.

2.2 Deep Learning on Surfaces

Deep neural networks now permeate computer vision, but
have only become prominent in 3D vision and graphics in
the past few years. We review some of the recent algorith-
mic advances for representation learning on surfaces, surface
registration, and morphable models.
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2.2.1 Geometric Deep Learning on Point Clouds andMeshes

Recent methods from the field of Geometric Deep Learning
(Bronstein et al. 2017) have emerged and propose analogues
of classical deep learning operations such as convolutions for
meshes and point clouds.

Point cloud processing methods treat the discrete surface
as an unordered point set, with no pre-defined notion of
intrinsic distances or connectivity. The pioneering work of
PointNet (Qi et al. 2017a) defines a point set processing layer
as a 1 × 1 convolution shared among all points, followed
by batch normalization, and ReLU activation. The result-
ing local point-wise features are aggregated into a global
representation of the surface by max pooling. In spite of
its simplicity, PointNet achieved state of the art result in
both 3D object classification and point cloud segmentation
tasks, and remains competitive to this day. Follow-up works
have explored extending PointNet to enable hierarchical fea-
ture learning (Qi et al. 2017b), as well as more powerful
architectures that attempt to learn the metric of the surface
via local kernel functions (Xu et al. 2018; Lei et al. 2019;
Zhang et al. 2019), or by building a k-NN graph in the fea-
ture space (Wang et al. 2019). While these methods obtain
higher classification and segmentation accuracy, their com-
putational complexity limits their application to large-scale
point clouds, a task for which PointNet is often preferred.

Graph Neural Networks, on the other hand, assume the
input to be a graph, which naturally defines connectivity and
distances between points. Initial formulations were based
on the convolution theorem and defined graph convolutions
using the graph Fourier transform, obtained by eigenanaly-
sis of the combinatorial graph Laplacian (Bruna et al. 2014),
and relied on smoothness in the spectral domain to enforce
spatial locality. Defferrard et al. (2016) accelerated spec-
tral graph CNNs by expanding the filters on the orthogonal
basis of Chebyshev polynomials of the graph Laplacian, also
providing naturally localized filters. However, the Laplacian
is topology-specific which hurts the performance of these
methods when a fixed connectivity cannot be guaranteed.
Kipf and Welling (2017) further simplified graph convo-
lutions by reducing ChebNet to its first order expansion,
merging trainable parameters, and removing the reliance on
the eigenvalues of the Laplacian. The resulting model, GCN,
has been shown to be equivalent to Laplacian smoothing (Li
et al. 2018) and has not been successful in shape process-
ing applications. Attention-based models (Monti et al. 2017;
Fey et al. 2018; Verma et al. 2018; Veličković et al. 2018)
dynamically compute weighted features of a vertex’s neigh-
bours and do not expect a uniform connectivity in the dataset,
and generalize the early spatial mesh CNNs that operated on
pre-computed geodesic patches (Masci et al. 2015; Boscaini
et al. 2016). Spatial and spectral approaches have both been
shown to derive from the more general neural message pass-

ing (Gilmer et al. 2017) framework. Recently, SpiralNet (Lim
et al. 2018), a specialized operator formeshes, has been intro-
duced based on a consistent sequential enumeration of the
neighbors around a vertex. Gong et al. (2019) introduces
a refinement of the SpiralNet operator coined SpiralNet++
which simplifies the computation of the spiral patches.

Finally, recent work explored skip connections to help
training deep graph neural networks. In Appendix B of Kipf
and Welling (2017), the authors propose a residual archi-
tecture for deep GCNs. Hamilton et al. (2017) introduce an
architecture for inductive learning on graphs based on an
aggregation step followed by concatenation of the previous
featuremap and transformation by a fully-connected layer. Li
et al. (2019) study very deep variants of the Dynamic Graph
CNN(Wanget al. 2019) using residual anddense connections
for point cloud processing. Finally, in Gong et al. (2020),
the authors relate graph convolution operators to radial basis
functions to propose affine skip connections, and demon-
strate improved performance compared to vanilla residuals
for a range of operators.

2.2.2 Registration

The methods presented in Sect. 2.1.1 are framed as opti-
mization problems that need to be solved for every surface
individually. Although able to produce highly accurate reg-
istrations, they can be costly to apply to large datasets, and
are based on axiomatic conceptualizations of the registra-
tion task. The reliance on sparse annotations to accurately
register expressive scans also means the data needs to be
manually annotated, a tedious and expensive task. A new
class of learning-based surface registration models is there-
fore emerging that, once passed the initial training effort,
promise to reduce the registration of new data to a fast
inference pass, and to potentially outperform hand-crafted
algorithms. In PointNetLK (Aoki et al. 2019), the authors
adapt the image registration of Lucas and Kanade (1981)
to point clouds in a supervised learning setting. A PointNet
(Qi et al. 2017a) encoder is trained to predict a rigid body
transformation G ∈ SE(3), with a loss defined between the
network’s predictionGest and a ground truth transformation
Ggt as ||G−1

estGgt − I||F , with ||.||F the Frobenius (matrix
�2) norm. A similar technique is employed in Wang and
Solomon (2019a), where the authors introduce a supervised
learning model for rigid registration coined as Deep Clos-
est Point (DCP). DCP learns to predict the parameters of
a rigid motion to align two point clouds, and is trained on
synthetically generated pairs of point clouds, for which the
ground truth parameters are known. The follow-up work of
PRNet (Wang and Solomon 2019b) offers a self-supervised
approach for learning rigid registration between partial point
clouds. In Lu et al. (2019), and Li and Zhang (2019), super-
vised learning algorithms are defined for rigid registration,
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but with losses defined on dense correspondences between
points, and on a soft-assigment matrix, respectively. Finally,
Shimada et al. (2019) designed a U-Net like architecture on
voxel grids for non-rigid point set registration, however, their
method is limited by the resolution of the grid and does not
build latent representations of the scans, nor does it provide
a morphable model.

2.2.3 Morphable Models

Abrevaya et al. (2018) train a hybrid encoder-decoder archi-
tecture on rendered height maps from 3D face scans using
an image CNN encoder and a multilinear decoder. This
approach circumvents the need for prior registration of the
scans to a template, but the face model itself remains linear.

Concurrently, there has been a surge of interest for deep
non-linearmorphablemodels to better capture extreme varia-
tions. Bagautdinov et al. (2018)model facial geometry inUV
space with a variational auto-encoder (VAE). Tran and Liu
(2018) replace the linear baseswith fully-connected decoders
to model 3D geometry and texture from images, a technique
extended in Tran et al. (2019). Ranjan et al. (2018) intro-
duce a convolutionalmesh auto-encoder based onChebyshev
graph convolutions (Defferrard et al. 2016). Bouritsas et al.
(2019), use Spiral Convolutions (Lim et al. 2018) to learn
non-linear morphable models of bodies and faces. In both
these works, the connectivity of the 3D meshes is assumed
to be fixed; that is, the scans have to be registered a priori.
The non-linear deep neural network replaces the PCA for
dimensionality reduction.

In Liu et al. (2019), an asymetric autoencoder is proposed.
A PointNet encoder is applied to rigidly aligned heteroge-
neous raw scans, and two fully-connected decoders produce
identity and expression blendshapes independently on the
BFM face template. Thus, the algorithm produces a regis-
tration of the input scan. Mesh convolutional decoders are
proposed in Kolotouros et al. (2019b) for human body recon-
struction from single images. In Kolotouros et al. (2019a),
model-fitting is introduced to also produce representations
directly on the SMPL model.

3 State of the Art

The autoencoder architecture of Liu et al. (2019) is the cur-
rent state of the art for the learned registration of 3D face
scans. A learning-based approach for registration is desir-
able since a model that generalizes would be able to register
new scans very quickly, thus potentially offsetting the time
spent training the model. Other benefits compared to tradi-
tional optimization-based registration may include increased
robustness to noise in the data. Furthermore, an autoen-
coder learns an efficient latent representation of the scans,

which may later be processed for other applications, while
the trained decoder can be used in isolation as a morphable
model.

Motivated by the aforementioned potential upsides, we
review the approach of Liu et al. (2019) and identify key
limitations and areas of improvement. We further evaluate a
pre-trainedmodel provided by the authors of Liu et al. (2019)
on the same dataset used in the original paper (also provided
by the authors). We refer to the provided pre-trained model
as the baseline.

3.1 Problem Formulation and Architecture

A crop of the mean face of the BFM 2009 model is chosen as
a face template on which to register the raw 3D face scans.
A registered (densely aligned) face is modeled as an identity
shape with an additive expression deformation:

S = Sid + ΔSexp (1)

With S = [x1, y1, z1; . . . ; xN , yN , zN ] the concatenated,
consistently ordered, Cartesian 3D coordinates of the ver-
tices. For this template, N = 29495.

A subset of Ns vertices from a processed input scan
(details of the processing below) are sampled at random to
obtain a point cloud representation of the scan. A vanilla
PointNet encoder without spatial transformers produces a
joint embedding z joint ∈ R

1024. Two fully-connected (FC)
layers, without non-linearities, are applied in parallel to
obtain identity and expression latent vectors in R512:

zid = Wid · z joint + bid = FCid(z joint ) (2)

zexp = Wexp · z joint + bexp = FCexp(z joint ). (3)

Twomulti-layer perceptrons consistingof two fully-connected
layers with ReLU activations decode the identity and expres-
sion blendshapes from their corresponding vectors:

Sid = FC2
id

(
ξ

(
FC1

id(zid)
))

(4)

= FC2
id

(
ξ

(
FC1

id

(
FCid(z joint )

)))
(5)

ΔSexp = FC2
exp

(
ξ

(
FC1

exp(zexp)
))

(6)

= FC2
exp

(
ξ

(
FC1

exp

(
FCexp(z joint )

)))
(7)

with ξ(x) = max(0, x) the element-wise ReLU non-
linearity.
Both decoders are symmetric, with FC1

(·) : R512 → R
1024

and FC2
(·) : R1024 → R

3.
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Table 1 Summary of training
data—reproduced from Liu
et al. (2019)

Database #Subj. #Neu. #Sample #Exp. #Sample

BU3DFE (Yin et al. 2006) 100 100 1000 2400 2400

BU4DFE (Yin et al. 2008) 101 >101 1010 >606 2424

Bosphorus (Savran et al. 2008) 105 299 1495 2603 2603

FRGC (Phillips et al. 2005) 577 3308 6616 1642 1642

Texas-3D (Gupta et al. 2010) 116 813 1626 336 336

MICC (Bagdanov et al. 2011) 53 103 515 – –

BJUT-3D (Baocai et al. 2009) 500 500 5000 – –

Real Data 1552 5224 17,262 7587 9405

Synthetic Data 1500 1500 15,000 9000 9000

3.2 Training Data

The training data is formed fromseven publicly available face
datasets of subjects from awide range of ethnic backgrounds,
ages, and gender, aswell as a set of synthetic 3D faces. Table 1
summarizes the exact composition of the training set.
Synthetic facesLiu et al. (2019) use theBFM2009morphable
model to synthesize neutral faces of 1500 subjects, and the
3DDFA expression model Zhu et al. (2015) to further gener-
ate 6 random expressions for each synthetic subject.
Real scansBoth neutral and expressive scans are kept, and the
data is unlabeled. The data was processed by first converting
the scans to textured meshes using simple processing steps,
e.g. Delaunay triangulation of the depth images. Automatic
keypoint localization was applied on rendered frontal views
of the scans to detect facial landmarks. The 2D landmarks
were back-projected on the raw texturedmesh using the cam-
era parameters. The cropped BFM template was annotated
withmatching landmarks, such that Procrustes analysis could
be applied to find a similarity transformation to align the raw
scan with the template.
Pre-processing In Liu et al. (2019), the authors applied
cropping to remove points outside of the unit sphere orig-
inating at the tip of the nose of the subject. The authors
also applied mesh subdivision to obtain denser ground-truth
meshes, thereby facilitating the sub-sampling of 29495 ver-
tices from scans with insufficient native resolution. Finally,
the sampling of points from the scans for training was done
at the pre-processing stage. Data augmentation was carried
out by randomly sampling vertices from some scans several
times and storing the different point clouds separately.

3.3 Losses and Training Procedure

Liu et al. (2019) sample Ns = N = 29495 vertices from the
(subdivided) scans. This number being equal to the number
of vertices in the template is a choice, and not a requirement.

Since the synthetic scans are, by nature, in correspon-
dence with the BFM template, Liu et al. (2019) use the

element-wise �1 norm to train with supervision. For real
scans, self-supervised training is carried out to minimize the
Chamfer distance between the output S of the decoder and
the potentially subdivided ground-truth scan.

Additional losses are used for synthetic and real scans.
Edge-length loss is applied to discourage poor triangulations
for the reconstruction. For real scans, the edge-lengths in
the output are regularized towards those of the template. For
synthetic scans, the edge-length loss is applied as a function
of the difference between the edge-length of the input and
the output meshes. Normal consistency is used for vertex
normals. Due to the presence of noise in the raw scans in the
mouth region (points from the inside of the mouth, teeth, or
tongue), Laplacian regularization is applied to penalize large
changes in curvature in a pre-defined mouth region on the
BFM template.

The autoencoder is trained in successive phases. First, only
the identity decoder is trained on the synthetic data only, then
on a combination of synthetic and real data. After 10 epochs,
the identity decoder and the fully-connected layer of the iden-
tity branch of the encoder are frozen (i.e. backpropagation
is disabled) and the expression decoder is trained on syn-
thetic data alone, and then on a mixture of synthetic and real
data. Finally, both decoders and encoder branches are trained
simultaneously on both synthetic and real scans.We refer the
reader to the original work for details.

3.4 Limitations

We now study the limitations of the approach.

3.4.1 Data Processing and Representation

Cropping Although cropping is a simple solution to remove
unnecessary parts of the scans, we argue relying on it makes
the method less robust. Cropping points outside of the unit
sphere centered at the tip of the nose is affected by the quality
of the landmark detection. Similarly, choosing the unit sphere
centered at the origin of the ambient space will be affected
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Fig. 2 Example sensor noise on the Bosphorus (left) and FRGC (right)
datasets. Spikes highlighted on the FRGC scan

by the location of the scan in R3. In both cases, even though
it is systematic, cropping is inconsistent: as the method is
not adaptive, there is no guarantee that the noise (i.e. the
points that do not contribute to a better face reconstruction
and could even degrade the performance) will be discarded.
In particular, for range scans such as those from the FRGC
(Phillips et al. 2005), Bosphorus (Savran et al. 2008) and
Texas 3D (Gupta et al. 2010) datasets, spikes an irregulari-
ties are commonly observed due to sensor noise, as shown in
Fig. 2. Median filtering has traditionally been applied to the
depth images before conversion to 3D surfaces as a means to
alleviate this issue (Gupta et al. 2010), but incurs additional
human intervention and might cause a loss of details. Crop-
ping would not remove spikes, nor would it discard other
irrelevant points if contained within the unit sphere. At the
same time, cropping might discard points that would have
contributed to the face region.
Subdivision scheme and vertex subsampling In Liu et al.
(2019), mesh subdivision was used to improve the accuracy
of the dense correspondences (i.e. provide more ground truth
points for the Chamfer loss), and to enable consistent sam-
pling of 29495 vertices for the input point cloud, even from
low-resolution face scans thatmight not have enough remain-
ing vertices in the facial region after cropping (e.g.most scans
from the BU-3DFE database (Yin et al. 2006)). The authors
then sampled 29495 vertices at random from the (subdivided)
mesh to obtain a point cloud.

Subdivision schemes do not introduce additional details
in the scan, but create a denser triangulation from exist-
ing triangles. The amount of memory required to store the
same geometry is thus largely increased. Figure 3 illustrates
the refinement step of the Loop scheme used by Liu et al.
(2019). Assuming we started with one triangle and applied
the scheme twice, the figure on the left in Fig. 3 shows the
result after one subdivision step, and the figure on the right
the result after two such steps. We can see that after one step,
no vertices were introduced inside of the original triangle:

Fig. 3 Refinement step of the loop subdivision scheme. Adapted from
(Pharr et al. 2016)

all of the new vertices are located on its edges. After two
steps, only 3 vertices have been placed inside the original
triangle, yet the number of vertices has been multiplied by 5.
In practice, two subdivision steps is the maximum that would
be applied due to the rapid increase in memory required to
store the subdivided meshes.

It is therefore apparent that a point cloud sampled uni-
formly at random from the vertices of the mesh cannot—in
general—yield a uniform coverage of the surface, even after
several mesh subdivision steps. Moreover, using the (sub-
divided) mesh as a ground truth in the Chamfer loss biases
the reconstruction: closest points for vertices of the recon-
structed mesh will either never be found inside the triangles
of the scan, or in an unfavorable ratio when at least two sub-
division steps have been applied.
Number of point clouds sampled per scan Liu et al. (2019)
sampled one point cloud per expression scan, and at most ten
point clouds per neutral scan, per subject. As this is done dur-
ing pre-processing, all samples must be stored individually.
No other data augmentation or transformation (e.g. jittering)
was used. To avoid overfitting to a particular sampling of a
given surface, we argue that as many different point clouds
as possible should be presented to the model for each mesh.

3.4.2 Architectural Limitations and Conclusion

We review the limitations of the two main blocks of the algo-
rithm of Liu et al. (2019), and conclude the section.
DecoderWhileMLPdecoders are powerful and fully capable
of representing details, they do not take advantage of the
known template connectivity and geometry. In fact, careful
tuning is required to obtain sound shapes: Liu et al. (2019)
rely on a strong edge length prior, and use synthetic data
extensively during training to condition both the encoders
and decoders to respect the geometry of the template.

We observe significant artifacts for a large portion of the
input scans, as shown in Fig. 4. Notably, we observe tearing-
like artifacts and self-intersecting edges, as well as excessive
roughness and ragged edges at the boundaries of the shape.
In particular, heavy artifacting is present in the mouth region
despite the use of the Laplacian loss. Such registrations can-
not be exploited for downstream tasks (such as learning from
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Fig. 4 Artifacts obtained with the architecture of Liu et al. (2019)

(a) (b)

Fig. 5 Variants of the PointNet block: The vanilla PointNet block a
consists of a 1 × 1 convolution followed by batch normalization and
ReLU activation. We propose a variant b better suited to small batch
sizes by replacing batch normalization with group normalization and
normalizing the features post-activation

or statistical analysis on the registered scans) without heavy
post-processing to correct the artifacts and improve surface
fairness.
Encoder A vanilla PointNet (Qi et al. 2017a) layer consists
of a 1× 1 convolution, followed by batch normalization and
a ReLU activation, as shown in Fig. 5a. Choosing Ns = N
facilitates mixed batching of synthetic and real scans, but
according to Liu et al. (2019), the optimal batch size for the
model was found experimentally to be 1. As batch normal-
ization is known to result in degraded performance for small
batch sizes (Wu and He 2020), we therefore investigate pos-
sible improvements.
Number of parametersWhile the PointNet encoder used in
Liu et al. (2019) enables a high degree of weight sharing, the
fully-connected decoders use dense fully-connected layers.
This design choice results in a high number of parameters
(183.6M), which, combined with the limited data augmenta-
tion and absence of regularization, promotes overfitting.
Conclusion The reliance on subdivision and cropping, the
high number of trainable parameters, as well as the training
methodology utilised, make the method of Liu et al. (2019)
only suitable for in-sample registration, and thus the fast
inference time does not fully offset the offline training time.
Thepresence of significant noise and artifacts on registrations

of scans from the training set further limits the applicability
of the model on its own.

4 Description of theMethod

We now introduce Shape My Face, our registration and mor-
phablemodel pipeline. Our approach is based on the idea that
registration can be cast as a translation problem, where one
seeks to faithfully translate a latent geometric information
(the surface) from an arbitrary input modality to a controlled
template mesh. It is therefore natural to adopt an autoencoder
architecture, with the advantages exposed in Sect. 3. We also
wish to ensure our model is compact and performs reliably
and satisfyingly on unseen data. The emphasis is, therefore,
on robustness and applicability to real-world data, potentially
on the edge.

4.1 Preliminaries and Stochastic Training

We choose the mean face of the LSFM model to be our
template. We manually cropped the same facial region as
the template of Liu et al. (2019) from a full-face combined
LSFM and FaceWarehouse morphable model, and ensured a
1-to-1 correspondence between vertices. We choose LSFM
since it is more representative of the mean human face than
the BFM 2009 mean, and to facilitate the prototyping of a
mouth model, as explained in Sect. 4.4.

We adopt a formulation in terms of blendshapes and define
the output of our network to be

S = μ + ΔSid + ΔSexp (8)

where μ is the template mean face shown in Fig. 6a, and
Δid andΔexp are identity and expression deformation fields,
respectively, defined on the vertices of μ. We motivate this
choice to encourage better disentanglement bymodeling both
identity and expression as additive deformations of a plausi-
ble mean human face.

We follow an encoder-decoder architecture using a point
cloud encoder and two symmetric non-linear decoders for
the identity and expression blendshapes. As we will develop
further, we propose a novel approach to avoid mouth arti-
facts by blending the non-linear blendshapes smoothly with
linear blendshapes of the mouth region (defined based on the
geodesic radius from the inside of the mouth). The flowchart
of the method is presented in Fig. 7.
Input shape representations At inference time, our method
only requires that we may randomly sample points on the
surface of the scan. At training time, we optionally use the
normal vectors at the sampled points (see Sect. 4.5). There-
fore, any input modality that satisfies these requirements is
suitable for training and inference.
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(a) (b) (c)

Fig. 6 Parts of the facemodel:Wedecode shapes by predicting newver-
tex positions for the mean face of the LSFM model Booth et al. (2016,
2018a) (a). To avoid ragged boundaries, we encourage a small crop
of the boundary (b) of the reconstructions to be close in position and
curvature to that of the LSFM mean face. We propose a parameter-free
approach for achieving high quality mouth reconstructions by recon-
structing a crop of the mouth region on a small mouth-specific PCA
model, and blending the reconstruction with the shapes predicted by
the decoders using a smooth blending mask derived from the geodesic
distance of the vertices in the template to a small crop of the lips (c)

In this work, we deal with training datasets of raw scans
represented as meshes rigidly aligned (with scaling) with the
template. Contrary to Liu et al. (2019), we do not apply any
further processing on the 3D scans after rigid alignment. In
particular, no surface subdivision and no offline sampling
for data augmentation are done. We will also demonstrate
inference on raw point clouds directly (Sect. 6.4). amically
sample Ns = 216 = 65,536 points uniformly at random

on the surface of the input mesh using a triangle weighting
scheme. Furthermore, we use the sampled point cloud as
ground truth in the Chamfer loss. This ensures the vertices
of the registration can be matched to points anywhere on
the input surface, including inside triangles where the true
projection of the vertices of the registration are more likely
to lie.

We denote the triangulated raw input scan by the tuple
(Sin,Tin), where Sin is the set of vertices of the mesh, and
Tin the triangles. We write Pin the point cloud dynamically
sampled on the surface of (Sin,Tin), and Nin the associated
sampled point normals.

We use both synthetic and real scans in training. The train-
ing procedure is detailed in Sect. 4.6.

4.2 Encoder and Attention

In PointNet (Qi et al. 2017a), the authors introduce one of
the first CNN architectures for point clouds. A PointNet layer
consists of a 1 × 1 convolution followed by batch normal-
ization and a ReLU activation, as shown in Fig. 5a. PointNet
showed high performance on classification and segmentation
tasks using moderately dense point clouds as input (2048
points for the ModelNet40 meshes). In this work, we sample
216 = 65,536 points from the input scans, which limits the
batch sizes that can be accommodated with a single GPU

Fig. 7 Flow-chart representation of our approach:We sample 216 points
uniformly at random on the surface of the scan to register. A modified
PointNet encoder computes features and an attention score for each
point, from which a global embedding z joint is obtained. We produce
two hyperpsherical embeddings zid and zexp from z joint , and apply
mesh inception decoders to output corresponding identity and expres-
sion blendshapes. To improve denoising, we smoothly blend the mouth

region in a blendshape with its projection on a specialized PCA mouth
model. During training (dotted lines), we measure the fit of the regis-
tration between the output of the network and the dynamically sampled
input point cloud. This ensures vertices of the reconstruction can be
matched to points anywhere on the surface of the scan, and not only to
the vertices
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implementation. As mentioned in Sect. 3.4.2, batch normal-
ization is known to be ineffective for small batches (Wu and
He 2020), as the sample estimators of the feature mean and
standard deviation become noisy.We therefore proposemod-
ified PointNet layers with group normalization (Wu and He
2020), that we choose to apply after the ReLU non-linearity.
Our modified PointNet layers are illustrated in Fig. 5b. We
denote by PN( fin, fout , g) the block consisting of a 1 × 1
convolution with fin input features and fout output features,
followed by one ReLU activation, and group normalization
with group size g. The sequence of point convolutional layers
in our encoder can thus be written E(·) = PN(3, 64, 32) →
PN(64, 64, 32) → PN(64, 64, 32) → PN(64, 128, 32) →
PN(128, 1024, 32).
Visual attention To improve the robustness of our method to
noise and variations in the physical extent of the scans, we
introduce a novel visual attention mechanism implemented
as a binary-classificationPointNet sub-network applied to the
features of the last PointNet layer and before themax-pooling
operation. This can be seen as a form of region-proposal (He
et al. 2017) or segmentation sub-network followedbyagating
mechanism. We use our modified PointNet layers and obtain
the following sequence of operations PN(1024, 128, 4) →
PN(128, 32, 4) → Conv1×1(32, 1).We use a smaller group
size of 4 for group normalization to discourage excessive
correlation in the features. The logits obtained as output of
the attention sub-network are converted to a smooth mask
by applying the sigmoid function and used as gating values
to the max pooling operation—controlling which points are
used to build the global latent representation z joint ∈ R

1024

for the scan.
Hyperspherical embeddings Two dense layers predict sepa-
rate identity and expression embeddings from z joint .
We choose zid , zexp ∈ R

256. Contrary to Liu et al. (2019),
the mapping is non-linear: we normalize the identity and
expression vectors, such that they lie on the hypersphere
S 255. Hyperspherical embeddings have been successful in
image-based face recognitionWang et al. (2018); Deng et al.
(2019) and shown to improve clusterability (Aytekin et al.
2018). Additionnally, we found the normalization to improve
numerical stability during training.

The full encoder can be summarized as follows:

Z̃ = E(Pin) (9)

A = Attention(Z̃) (10)

z joint = MaxPool(σ (A) � Z̃) (11)

zid = Normalize(FC1024,256(zJoint )) (12)

zexp = Normalize(FC1024,256(zJoint )) (13)

where � denotes the element-wise (Hadamard) product and
σ(x) = 1

1+e−x is the sigmoid function applied element-wise.

Fig. 8 One Mesh Inception block: Our mesh convolution block offers
two paths for the information to flow from one resolution to the next.We
concatenate the activated feature map of the current convolution layer
with the upsampled feature map of the previous layer. The features are
combined in a learnable way by a fully connected layer followed by
another ELU activation

4.3 Mesh Convolution Decoders

As developed in Sect. 3.4.2, the fully-connected decoders
used in Liu et al. (2019) suffer from two main chal-
lenges. First, they employ a high number of parameters,
which promotes overfitting. Second, they do not leverage
the known template geometry, and therefore require heavy
tuning and regularization to produce sound shapes without
abrupt changes in curvature and triangle geometry.

We propose non-linear decoders based on mesh convolu-
tions. Our method is applicable to any intrinsic convolution
operator on meshes. In this particular implementation, we
use the SpiralNet++ operator. Denoting x(k)

i the features of
vertex i at layer k, we have:

x(k)
i = γ (k)

(
|| j∈S(i,M) x

(k−1)
j

)
(14)

with γ (k) anMLP, || the concatenation, and S(i, M) the spiral
sequence of neighbors of i of length (i.e. kernel size) M .

We observed training was difficult with the vanilla oper-
ators. As some operators such as SpiralNet++ and ChebNet
already have a form of residual connections built-in (the
independent weights given to the center vertex of the neigh-
borhood), vanilla residuals or the recently-proposed affine
skip connections (Gong et al. 2020) would be redundant. We
instead propose a block reminiscent of the inception block in
images (Szegedy et al. 2015) that can benefit any graph con-
volution operator. We concatenate the output of the previous
upsampled feature map with the output of the convolution
after an ELU non-linearity (Clevert et al. 2016). The con-
catenated feature maps are combined and transformed to
the desired output dimension using an FC layer followed
by another ELU non-linearity, as illustrated in Fig. 8.

We found this technique to drastically improve conver-
gence and details in the reconstructed shapes. The technique
is comparable to GraphSAGE (Hamilton et al. 2017), using
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graph convolutions followed by ELU as the Aggregatek
function in (Hamilton et al. 2017, Algorithm 1), and ELU
non-linearities. We refer to our block asMesh Inception.

For upsampling, we follow the approach of Ranjan et al.
(2018). We decimate the template four times using the
Qslimmethod (Garland and Heckbert 1997) and build sparse
upsampling matrices using barycentric coordinates. We set
the kernel sizes of our convolution layers to 32, 16, 8, and 4,
starting from the coarsest decimation of the template.

4.4 MouthModel and Blending

Though the raw scans are rigidly alignedwith the template on
5 facial landmarks that include the two corners of the mouth
(Liu et al. 2019), the mouth expressions introduce a high
level of variability in the position of the lips. Additionally,
numerous expressive scans include points captured from the
tongue, the teeth, or the inside of the mouth. This noise and
variability in the datasetmakesfindinggood correspondences
for the mouth region difficult and leads to severe artifacting
in the form of vertices from the lips being pulled towards the
center of the mouth. In Liu et al. (2019), the authors advocate
for the use of Laplacian regularization to prevent extreme
deformations by penalizing the average mean curvature over
a pre-defined mouth region, controlled by a weight λLap.
While this shows some success, we experimentally observed
that, for small tomoderate values of λLap, artifacts remained.
As shown in Fig. 9, while artifacts were reduced for large
values of λLap, so was the range of expressions.

In this work, we introduce a new approach based on blend-
ing a specialized linear morphable model with the non-linear
face model. We first isolate a small set of vertices, Sinner ,
from the innermost part of the lips of the croppedLSFMmean
face, as shown in Fig. 6c. We then compute the geodesic dis-
tance from Sinner to all vertices of the template using the
heat method with intrinsic Delaunay triangulation (Crane
et al. 2017), which is visualised in Fig. 10a. We redefine
the mouth region to be the set of vertices Smouth within a
given geodesic radius d from Sinner . By visual inspection,
we choose d = 0.15. The resulting mouth region is shown
as a point cloud in Fig. 10c.

To obtain a linear morphable model of this mouth region,
we cropped the PCA components of the full face LSFM
and FaceWarehouse model whose mean we used to obtain
our face template. We keep only a subset, Wid , of 30 iden-
tity components (from LSFM) and a subset, Wexp, of 20
expression components (from FaceWarehouse). While it is
well known that computing PCA on the cropped region
of the raw data leads to more compact bases (Blanz and
Vetter 1999; Tena et al. 2011), re-using the LSFM and Face-
Warehouse bases enabled efficient prototyping. There is a
trade-off between representation power and clean noise-free
reconstructions: the model needs to be powerful enough to

Fig. 9 Laplacian loss and statistical mouth model: Laplacian loss (c)
limits the expressivity of the scans but does not eliminate the artifacts
completely (sample from the BU-3DFE dataset)

Fig. 10 Mouth region and blending: From the small crop of the lips of
Fig. 6c, we compute the geodesic distance of all vertices of the template
to the vertices of the crop Sinner (a). We define the mouth region as
the vertices within a chosen geodesic radius of Sinner (c). We define
the blending mask as a function of the geodesic distance, shown as a
heatmap in (b)

represent a wide range of expressions but restrictive enough
that it does not represent the unnatural artifacts.

We project the mouth region of the blendshapes on the
PCA mouth model during training and blend them smoothly
with their respective source blendshapes, i.e., we project
the mouth region of Sid on Wid and the mouth region of
Sexp on Wexp. Blending should be seamless, but—equally
importantly—should also remove artifacts. We propose to
define a blending mask intrinsically as a Gaussian kernel of
the geodesic distance from Sinner :

b(r , c, τ ) =
{
exp(−(r−c)2/τ 2), if r ≥ c

1, otherwise.
(15)

Where c and τ control the geodesic radius for which the
PCA model is given a weight of 1, and the rate of decay,
respectively. Compared to exponential decay, the squared
ratio ((r − c)/τ)2 allows us to favor more strongly the PCA
model when r − c ≤ τ and decay faster for r − c > τ .
Enforcing weights of 1 within a certain radius helps ensure
the artifacts are entirely removed.

The mouth region of the blendshape S(.) is redefined as:

S(.),mouth = M � (
P(.)Y(.),mouth

) + (1 − M) � Y(.),mouth

(16)
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Fig. 11 Blending function: Plot of b(r , c, τ ) for the values of c and
τ used in this paper. We enforce a weight of 1 on the PCA model for
the vertices within geodesic distance c of Sinner . We choose the rate of
decay τ to enforce a weight close to 0 on the PCA model at the edges
of the mouth region

With M the blending mask, Y(.),mouth the mouth region in
the output of the mesh convolutions, and P(.) the projection
matrix on the matching PCA basis.

We choose c experimentally. As c varies, we adapt τ to
ensure the contribution of the PCA model to the reconstruc-
tion of the mouth region is low at the edges of the crop, and
avoid seams. For a desired weight ε << 1 at distance r and
given c, we compute

τ(r , c, ε) = r − c
√− log(ε)

. (17)

In practice, we choose c = 3.5e−2 and ε = 5e−4. We plot
the resulting b(·, c, τ ) in Fig. 11.

In thiswork,wefixed c and τ for all shapes, on the assump-
tion that the geodesic distance from the inner lips does not
vary excessively in the dataset. However, it is perfectly rea-
sonable to consider both parameters to be trainable, or to
predict them from the latent vectors z joint , zid or zexp to
obtain shape or blendshape-specific blending masks.

4.5 Losses

For synthetic scans, we define

Lvertex (S,Sin) = ||Sin − S||1. (18)

For real scans, we use the Chamfer distance

Lvertex (S,Pin) =
∑

p∈S
min
q∈Pin

||p − q||22

+
∑

q∈Pin
min
p∈S ||p − q||22. (19)

As in Liu et al. (2019), we discard q from the error if

min
q∈Pin

||p − q||22 > σ or min
p∈S ||p − q||22 > σ. (20)

We set σ = 5e − 4.
For synthetic scans, we let n(p) be the normal vector at

vertex p ∈ S, and nin(p) be the normal in the synthetic scan,
and define the normal loss as:

Lnormal = 1

N

∑

p∈S
(1− < n(p),nin(p) >). (21)

For real scans, we use

Lnormal = 1

N

∑

p∈S
(1− < n(p),Nin(q) >), (22)

where q is the closest point in Pin found by Eq. 19. In both
cases, we set a weight of λnorm = 1e − 4.

Mesh convolutions are aware of the template connectivity
and geometry, and do not require as much regularization as
MLPs, we therefore use a weight of λedge = 5e − 5 for the
edge-loss, whose formulation is identical to Liu et al. (2019).

To regularize the attention mechanism during the ini-
tial supervised training steps, we assume all points sampled
from the synthetic faces are equally fully important and
none should be removed. We encourage the attention mask
for the points sampled from synthetic scans to be 1 every-
where, using the binary cross entropy loss with a weight
λatt = 1e − 4.

Finally, we enforce both an edge loss and �1 loss regu-
larization between the reconstruction and the template in a
small crop of the boundary, shown in Fig. 6b, to eliminate
tearing artifacts. We let λbnd = 1e − 3.

4.6 Training, Models, and Implementation Details

Training dataAs previously exposed, we use the same raw
aligned data as the baseline model of Liu et al. (2019), but
do not apply any further pre-processing, including data aug-
mentation. To keep the ratio of identity and expression scans
identical, we simply sample from the same scan as many
times as required in a given training epoch.

In addition to the seven datasets of Table 1, we further
add two large-scale databases of 3D human facial scans. The
MeIn3D (Booth et al. 2017, 2018a; Bouritsas et al. 2019)
database contains 9647 neutral face scans of people of diverse
age and ethic background. We also select 17,750 scans from
the 4DFAB (Cheng et al. 2018) database. 4DFAB contains
neutral and expressive scans of 180 subjects captured in 4
sessions spanning a period of 5 years. Each session comprises
up to 7 tasks, consisting of either utterances, voluntary, or
spontaneous expressions.
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Table 2 A very large scale
morphable model: Summary of
the additional databases used to
train SMF+

Database #Subj. #Neu. #Sample #Exp. #Sample

MeIn3D (Booth et al. 2017) 9647 9647 9647 0 0

4DFAB (Cheng et al. 2018) 180 6449 6449 11,301 11,301

Real Data (additional) 9727 16,096 16,096 11,301 11,301

Real Data (total) 11,379 21,320 33,358 18,888 20,706

Synthetic Data (total) 1500 1500 15,000 9000 9000

For a given subject in the 4DFAB database, we select the
first frame of all sequences in the first two tasks as neutral
scans. We select the middle frame of every sequence of the
first two tasks as expressive scans for the six basic expres-
sions (happy, sad, surprised, angry, disgust, and fear) and
utterances. For tasks 3, 4, and 5, we select the frames at 1/3
and 2/3 of the sequence. For task 6, we select the frames at
1/3 and 2/3 of the sequence for the first two sessions, and
the middle frame otherwise. We pick the middle frame for
all other sequences.

In this work, we evaluate two models. We call SMF our
model trained on the same dataset as the baseline. Our model
trained with the addition of theMeIn3D and 4DFAB datasets
is denoted by SMF+. The breakdown of the dataset for SMF+
is presented in Table 2.
Training procedure The BFM 2009 model was trained on a
sample size of 200 subjects, and offers a limited representa-
tion of the diversity of human facial anatomy. We found the
synthetic data to hinder the performance of the model, and
to limit the realistic nature of the reconstructions. Mesh con-
volution operators learn to represent signals on the desired
template and can readily exploit its connectivity and learn
local geometric properties, we therefore drastically reduce
the reliance on synthetic data to only the very first stages of
training to condition the attention mechanism.

We first train the encoder and the identity decoder on syn-
thetic data only for 5 epochs; and then on real neutral scans
only for a further 10 epochs. We repeat this procedure for the
expression decoder by freezing the identity decoder and the
identity branch of the encoder, using only expressive scans.
We then train both decoders jointly and the encoder for 10
epochs on the entire set of real scans. Finally, we change the
batch size to 1 and refine the complete model for 15 epochs
on the entire set of real scans.

We set the initial batch size to 2 and 8 for SMF and SMF+,
respectively. We train the models with the Adam optimizer
(Kingma and Ba 2014), with a learning rate of 1e − 4, and
automatically decay the learning rate by a factor of 0.5 every
5 epochs. No additional regularization is used.
Software implementation and hardware Our model is imple-
mented with Pytorch. We use the CGAL library for the
computation of the geodesic distance using the heat method
(Crane et al. 2020), implemented in C++ as a Pytorch

extension. We render figures using the Mitsuba 2 renderer
(Nimier-David et al. 2019).

All models were trained on a single Nvidia TITAN RTX,
in a desktop workstation with an AMD Threadripper 2950X
CPU and 128GB of DDR4 2133MHz memory.
Side by side comparison We summarize the differences
between SMF and the baseline in Table 3.

5 Experimental Evaluation: Registration

We first evaluate SMF and SMF+ on surface registration
tasks. In addition to the original data from Liu et al. (2019),
we test the generalisability of our method on a previously
unseen dataset, 3DMD. 3DMD is a high resolution dataset
containing in excess of 24,000 scans captured frommore than
3000 individuals. The dataset contains subjects from a wide
range of ethnicities and age groups, each expressing a vari-
ety of facial expressions including neutral, happy, sad, angry
and surprised. As stated in Sect. 3, we obtained a pre-trained
model from Liu et al. (2019) trained on the entire dataset,
which we use as a baseline.

5.1 Landmark Localization

To reproduce the experiment of Liu et al. (2019), we first
evaluate the methods on the BU-3DFE database. We train
SMF on the whole training set, as well as on the training
set without BU-3DFE. We also re-trained a model using the
methodology described in Liu et al. (2019), excluding BU-
3DFE from the training set.We include SMF+ (in sample) for
comparison. We also report the performance of Non-Rigid
ICP (NICP) initialized with landmarks and with additional
stiffness weights to regularize deformations of the boundary,
and use the values reported in Liu et al. (2019) for the algo-
rithms of Bolkart and Wuhrer (2015), Salazar et al. (2014),
and Gerig et al. (2018). For 3DMD, we report the perfor-
mance of NICP initialized with landmarks, the pre-trained
model of Liu et al. (2019), SMF, and SMF+. For the sake of
completeness, we also report the results of initializing NICP
with the registration provided by SMF and SMF+ in place
of the LSFM mean face and without landmarks information
or stiffness weights. Given manual annotations on the raw
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Table 3 Summary: Side by side comparison of SMF and the baseline of Liu et al. (2019)

Baseline SMF

Encoder Vanilla PointNet Modified PointNet

z joint space R
1024

R
1024

zid space R
512 S 255 ⊂ R

256

zexp space R
512 S 255 ⊂ R

256

# input points 29,495 65,536

Template BFM 2009 LSFM

Decoders 2-layer MLPs Mesh inception

Preprocessing Cropping, Subdivision, Data augmentation None

Input Pre-computed Stochastic

Ground truth Subdivided mesh Stochastic

Losses �1/ Chamfer, normal, edge, Laplacian �1/ Chamfer, normal, edge, boundary, attention

Additional features None Visual attention

Trained model file size 701MB (float32) 179MB (float32)

# Trainable params. 183.6 millions (100%) 15.5 millions (8.8%)

scans, grouped by semantic label
(
l∗i

)k
i=1 (e.g. left eye, or

nose), we compute the semantic landmark error per land-
mark group as 1

k

∑k
i=1 ||l̂i − l∗i ||, with l̂i the corresponding

landmark in the registration.
We report the mean and standard deviation of the error

within each group. Table 4 summarizes the results for the
BU-3DFE dataset, and Table 5 the results on 3DMD. We
note that applying NICP did not significantly change the
landmark error, which is likely due to the reconstructions
output by SMF and SMF+ being already sufficiently close
to the ground truth surface. There is, however, an advantage
in using SMF to initialize NICP compared to landmarks: the
typical runtime of the public implementation of NICP we
used (from the publicly available LSFM code (Booth et al.
2018a)) with landmarks initialization was between 45 and 60
seconds per scan, while the initialization with SMF achieved
equally detailed registrations in around 20 seconds per scan.

We note the high error values for the jaw landmarks on
both datasets. The landmarks for the chin and jaw are at the
boundary of the template. Since our method is trained on
point clouds sampled from the raw scans with no manual
cropping, the closest points for the boundary of the template
are not at the edges of a tight crop of the face, and therefore
the vertices of the boundary get pulled farther than where
jaw landmarks are manually annotated. This results in large
error values for these landmarks. Increasing the weight of
our boundary loss regularization may help mitigate this phe-
nomenon.

5.2 Surface Error

While a low landmark localization error suggests key facial
points are faithfully placed in the registration, it does not paint

the whole picture and does not indicate the general recon-
struction fidelity. In particular, it is affected by the inevitable
imprecision of manual labeling, and the error is measured on
a small number of points.

To further assess the performance of the models, we mea-
sure the surface reconstruction error between the registrations
and the ground-truth raw scans. We randomly select a sam-
ple of 5000 training scans and a sample of 5000 test scans
(from the 3DMD dataset) and measure the distance of the
vertices of the registrations to their closest point anywhere
on the ground-truth surface (i.e., not the closest vertex). We
summarize each scan by its mean surface error.
Training and test setWe visualize the error distribution on the
subsets of the training and test sets in Fig. 12. On both the
training and test sets, the models exhibit typically low error,
with a pronounced skew of the mean towards lower values
(0.306mm for SMF and 0.297mm for SMF+). On the train-
ing set, the mean (per scan) error distributions of SMF and
SMF+ appear very similar, with a slight advantage to SMF+.
On the test set, however, SMF+ displays significantly lower
values at the quartiles and a tighter distribution, suggesting
the addition of the MeIn3D and 4DFAB datasets was effec-
tive in reducing the generalization gap and the variance of
the model.
BU-3DFE and 3DMD To complete the evaluation on BU3D
and 3DMD, we produce in Fig. 13 the cumulative distribu-
tion function (CDF) of the surface error for the entire BU3D
dataset, and for the aforementioned sample of 5000 test scans,
for the same models as in Sect. 5.1. To help visualize the
counts of extreme values, we provide a rug plot for SMF
evaluated out of sample. As evidenced by the plots, SMF and
SMF+ performed very similarly, while SMF trained without
BU-3D had slightly lower performance. The baseline model,
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Table 5 Semantic landmarks error on 3DMD: Comparison of the mean and standard deviation for semantic landmark error (mm) for 3DMD using
the ibug 68 facial landmark set

Region NICP Liu et al. (2019) SMF SMF+ SMF + NICP SMF+ + NICP

L Eyebrow 5.94 ± 2.16 6.23 ± 1.54 5.57 ± 1.66 5.87 ± 1.84 5.54 ± 1.70 5.84 ± 1.86

R Eyebrow 5.27 ± 2.05 6.14 ± 1.74 6.32 ± 2.20 6.70 ± 2.18 6.27 ± 2.21 6.68 ± 2.19

L Eye 4.29 ± 1.26 3.83 ± 1.17 4.27 ± 0.99 4.75 ± 0.99 4.25 ± 1.00 4.79 ± 0.99

R Eye 4.02 ± 1.37 3.79 ± 1.27 4.03 ± 1.18 4.08 ± 1.15 3.98 ± 1.19 4.01 ± 1.16

Nose 4.56 ± 0.96 4.94 ± 1.17 5.30 ± 0.85 5.42 ± 0.87 5.22 ± 0.83 5.32 ± 0.86

Mouth 3.96 ± 1.70 4.73 ± 1.65 6.36 ± 1.16 6.38 ± 1.15 6.31 ± 1.16 6.25 ± 1.14

Jaw 24.58 ± 4.69 35.76 ± 5.59 24.91 ± 5.67 25.25 ± 5.75 24.87 ± 5.73 25.22 ± 5.76

Avg Face 4.43 ± 0.95 4.84 ± 1.05 5.57 ± 0.74 5.73 ± 0.76 5.52 ± 0.73 5.65 ± 0.74

Avg 9.47 ± 1.59 12.57 ± 1.76 10.41 ± 1.75 10.61 ± 1.78 10.36 ± 1.76 10.55 ± 1.77

L and R are shorthand for Left and Right respectively. Avg is the average for all inner face landmarks

Fig. 12 Visualizing the error mean distribution on the training and test
sets: violin plots of the mean (per scan) surface error on the training
and test sets for SMF, SMF+, and the baseline, plotted on a log scale. A
violin plot represents the range of the data along with a kernel density
estimation of the distribution. We split the plots to help compare the
error distribution on the two datasets. Vertical dotted lines represent the
quartiles of the distribution

on the other hand, had significantly worse error distribution.
Table 6 provides numerical values for the 25%, 50%, 75%,
and 99% quantiles for the models we plotted. We omit the
baseline evaluated out of sample on BU-3DFE due to the
very high landmark localization error. On our separate test
set, a similar development unfolds.

The difference between the error distributions of SMF+
and SMF is small but significant, with SMF+ outperforming
the model trained on less data. Out of sample, the baseline
model’s performance is significantly degraded, with the bot-
tom 25% of the surface error already reaching 2.60mm.
Training and test reconstructionsWevisualize sample recon-
structions from SMF on the training and test sets. For each
scan, we render the input point cloud sampled on the mesh,
and the attention score predicted by SMF for every point as
a heatmap, with bright green denoting attention scores close
to 1, and black denoting attention scores close to 0. We also

Fig. 13 Cumulative error: Cumulative distribution function for the
mean (per scan) error on the training and test sets for the models evalu-
ated for the semantic landmark accuracy experiment. Even though the
semantic landmark error of the baseline was not atypical, the distribu-
tion of the surface error reveals that the registration accuracy is actually
much lower than that of SMF and SMF+. The rug plot (red bars at
the bottom) visualize the distribution of the samples in terms of mean
error for SMF evaluated out of sample. On 5000 sample test scans, few
outliers had high mean surface error. SMF+ performs comparably with
SMF in sample but has distinctly lower generalization error

render the reconstruction produced by SMF, and the heatmap
of the surface error as a texture on the registration.We render
the reconstruction produced by the baseline for comparison.
Figure 14 provides visualizations for 18 training samples
arranged in two columns. Figure 15 shows the comparative
performance of the baseline and our model for 12 test scans
arranged in two columns. We show sample reconstructions
from SMF+ on MeIn3D and 4DFAB in Fig. 16.
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Table 6 Mean surface error
quantiles: on BU-3DFE (left)
and 3DMD (right) in mm

BU-3DFE 25% 50% 75% 99% 3DMD 25% 50% 75% 99%

SMF In 0.306 0.347 0.396 0.597 SMF Out 0.381 0.447 0.535 1.489

SMF+ In 0.297 0.333 0.387 0.617 SMF+ Out 0.347 0.407 0.490 1.326

SMF Out 0.434 0.501 0.594 0.983 – – – – –

Baseline In 0.995 1.261 1.683 2.989 Baseline Out 2.605 3.239 3.894 6.497

Visual inspection correlates strongly with the numerical
evaluation. Our SMF model consistently produces registra-
tions that are smooth and detailed, with very low surface
error. The attention mechanism appears to successfully seg-
ment the face, eliminating gross corruption, and discarding
points from the tongue and teeth for several scans. Ourmodel
faithfully represents both the identity and expression, even
for extreme expressions on the test set.

In particular, factors such as age, ethnicity, and gender are
accurately captured. Non-linear deformations of the nose,
cheeks, and mouth are well preserved across a wide range
of identities and expressions. Finally, despite the inclusion
of points from the teeth and tongue in the raw scans, SMF
produces artifact-free and expressive mouth reconstructions
with seamless blending in the vast majority of cases.

5.3 Stability to Resampling

Given the stochastic nature of the method, we evaluate the
stability of the reconstructions to resampling of the input
scans. We then focus on evaluating the attention mechanism.

We select a subset of 1000 scans each of the training and
test sets and produce 100 reconstructions with SMF, ran-
domly sampling a new point cloud on the surface of the
scan at each iteration. For each scan, we compute the mean
reconstruction. For each point of the 100 reconstructions,
we compute its Euclidean distance to the matching point
in the mean reconstruction for that scan. We then take the
median and max of these distances for every point in the
scan and compute their median across the scan, denoted
by “median median” and “median max”, as indications of
the typical typical-case and typical worst-case variations.
We collect both values for each of the 1000 training and
1000 test scans, and plot their histograms in Fig. 17. The
results show our method is stable with respect to resampling,
the median median variations, in particular, are concentrated
below 0.1mm with a typical maximum variation in position
from the mean below 0.2mm per vertex. Interestingly, we
observe less spread on the test set than on the training set,
but slightly higher typical maximum displacement per ver-
tex, still below 0.2mm per vertex. Figure 18 illustrates that
the attention mechanism is also stable.

5.4 Ablation Study on the Decoder

We now study different variations of SMF by changing the
decoder. Figure 19 presents the comparative performance of
SMF, SMF+ and the ablations measured by average surface
reconstruction error and ordered by test error. We also report
the landmark localization errors of some of the variants in
Table 7 for BU-3DFE and Table 8 for 3DMD.

5.4.1 Single Decoder

While two or more decoders can be used to promote sep-
aration between factors of variation in the data, and ties to
the morphable model and generative model aspect of our
work, our registration framework is equally applicable to
single decoders (abbreviated s.d.). We keep the architecture
of Sect. 4.3 and the mouth models of Sect. 4.4, and set the
dimension of the latent space to 256 (“SMF s.d.”) and 512
(“SMF 512 s.d.”). As can be seen in Fig. 19, SMF and SMF
512 s.d. have similar average error and error variance, with
SMF 512 s.d. slightly outperforming SMF, while SMF s.d.
shows a slightly greater drop in performance. These results
are expected: training a single decoder is no harder than train-
ing twoandusing a singlemouthmodelwith both identity and
expression bases is also simpler, but the single latent space
of dimension 256 in SMF s.d. further constraints the model
compared to SMF. Sample reconstructions are presented in
Fig. 20.

5.4.2 Fully-Connected Decoders

We investigate whether the improvements in the encoder
and training methodology enable generalization with fully-
connected decoders, and how the performance of such
decoders compares to that of ourmesh convolutional decoders.
We follow the same architecture as Liu et al. (2019) for the
decoders. The models compared are: SMF fc, obtained by
substituting the mesh inception decoders with MLPs, keep-
ing the dimension of the identity and expression latent spaces
to 256 and all other hyperparameters identical and SMF 512
fc with latent spaces of dimension 512.

As reported in Fig. 19, SMF outperforms both variants in
terms of surface error, while the fc variants performed better
in terms of landmark error. Visualizing the reconstructions in
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Raw scan Baseline Att. Reconst. Error Raw scan Baseline Att. Reconst. Error

mm
5.003.752.501.250.00

Fig. 14 Sample reconstructions on the training set for SMF: arranged in
two columns. From left to right: raw scan, output of the baseline, point
cloud sampled on the scan by SMF and predicted attentionmask, output
of SMF, and surface reconstruction error visualized as a texture on the

output of SMF.We can see SMFmarkedly outperforms the baseline and
provides accurate natural-looking reconstructions with uniformly low
error in the facial region and accurate representation of both identity
and expression
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Raw scan Baseline Att. Reconst. Error Raw scan Baseline Att. Reconst. Error

mm
5.003.752.501.250.00

Fig. 15 Sample reconstructions on the test set for SMF: arranged in
two columns. From left to right: raw scan, output of the baseline, point
cloud sampled on the scan and predicted attentionmask, output of SMF,
and surface reconstruction error visualized as a texture on the output of

SMF. The test reconstructions look comparable to the training recon-
structions for SMF, with high quality registrations across gender, age
and ethnicity, even for extreme facial expressions

Fig. 16 Sample reconstructions
on additional training data for
SMF+: arranged in two
columns. From left to right: raw
scan, point cloud sampled on the
scan by SMF+ and predicted
attention mask, output of SMF+,
and surface reconstruction error
visualized as a texture on the
output of SMF+. Top row:
4DFAB, bottom row: MeIn3D

Raw scan Att. Reconst. Error Raw scan Att. Reconst. Error

mm
5.003.752.501.250.00
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Fig. 17 Per vertex distance to the mean prediction: We sample 100
different point clouds for 1000 training and test scans and compute, for
each vertex in each registration, its median Euclidean distance to the
matching vertex in the average reconstruction. We present histograms
of the max and median values (across vertices) per scan to show our
method is stable to resampling the same input surface

Fig. 18 Attention mask: Attention mask for two point clouds sampled
from the same test shape (3DMD). It can be seen the attention mech-
anism excludes the points inside of the mouth and outside of the face
area. The mask is also stable to resampling of the scan

Fig. 20, however, shows heavy noise. We therefore increased
the edge-length regularization to λedge = 2e − 4 and re-
evaluated the models (now SMF fc’ and SMF 512 fc’). The
models with increased edge-length regularization provided
smoother reconstructions, but still suffered from artifacting
and also performed worse in both surface error and land-
mark error. This ablation confirms that, in order to obtain
reconstructions that are free from noise and large variations
in curvature with fully-connected decoders, increased reg-
ularization is required, at some cost in accuracy. It is also
apparent that some error metrics, such as landmark localiza-
tion error, favor models that fit the positions of individual
vertices at the expense of surface fairness.

It is worth noting that SMFwith fully-connected decoders
generalizes well to the test set, and that fully-connected
decoders may in some cases provide finer details, albeit
with additional noise. Our mesh inception decoders, how-
ever, achieve comparable performance, with no noise and
with a fraction of the trainable parameters. We also note that
the variance of the mean surface error is higher with fully-
connected decoders, as indicated by the wider error bars in
Fig. 19.

Fig. 19 Comparison of the averagemean (per scan) surface fitting error
for different choices of decoders, on 5000 random training scans and
5000 random test scans, ordered by average test error

5.4.3 Skip Connections

We now compare our mesh inception decoders with standard
SpiralNet++ decoders, keeping all hyperparameters equal,
and report the performance of “SMF no s.c.”. The model
without skip connections performed noticeably worse than
SMF in terms of surface error, and landmark error on BU-
3DFE, but was slightly better on the landmark localization
task on 3DMD. Visual inspection in Fig. 20 reveals the pres-
ence of artifacts, especially around the mouth area.

5.4.4 Mouth Model

As stated in Sect. 4.4, the purpose of introducing a con-
strained PCA model for the mouth is to produce reconstruc-
tions that do not display unnatural deformations of themouth
in the presence of noisy points from the teeth or tongue, by
finding a trade-off between model expressivity and robust-
ness. Thus, it is expected that using the PCA model may
come at a loss of precision.

We compare the models with mesh inception and fully-
connected decoders in four scenarios: PCA mouth model
(SMF, SMF fc’), nomouthmodel and no regularization (SMF
no m.m., SMF fc’ no m.m.), and Laplacian regularization
with weight λlap = 2.5e − 4 and λlap = 1e − 3. We imple-
mented Laplacian regularization using uniformweighting, as
we found cotangent weights to be highly numerically unsta-
ble, leading to severe artifacting in the mouth region. We
report the average surface reconstruction errors of the mod-
els in Figure 19 as well as their landmark localization errors
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Fig. 20 Visual comparison of different ablations: We selected 5 training scans and 5 test scans from Figs. 14 and 15 and produced their registration
with various choices of decoders compared in our ablation study

on BU3D and 3DMD in Table 7 and Table 8. We further
provide sample reconstructions in Figure 20.

Numerically, the models with no mouth regularization
showed higher test surface error and lower training surface
error, for both fully-connected an mesh inception decoders,
with the convolutional decoders markedly outperforming the

dense layers. This is explained by the fact that not constrain-
ing the vertices in the mouth region enables the model to
match them at a low cost (in terms of chamfer distance) with
points from the teeth or inside of themouth, thus lowering the
error measured. Laplacian regularization behaves similarly,
as visualized in Fig. 20, where the mouth reconstructions
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Fig. 21 Violin plot: of the training and test error for the model trained
without attention compared to SMF, SMF with a vanilla PointNet
encoder, and the baseline

of the models that use Laplacian loss are in-between the
non-regularizedmodels and the PCA-neural network hybrids
in terms of deformations induced by noisy points from the
inside of the mouth. On the other hand, the hybrid models
produced noise-free reconstructions in all cases.

We note that relying only on the neural network, with an
additional Laplacian loss, improved the surface fairness of
the registrations produced by the fully-connected decoders.
This is expected, as the hybrid models ought to be harder
to optimize. Naturally, the non-linear models are also more
powerful and expressive than the PCAmouth models (which
is the reasonwhywe use the latter to constrain the former and
perform denoising), and should therefore be favored when
training on curated noise-free data.

We conclude that, for collections of raw noisy scans, our
proposed approach of building hybrid models is effective.

5.5 Ablation Study on the Encoder

We now evaluate the contribution of the improvements we
made to the PointNet encoder (attention mechanism, group
normalization)by carrying-out an ablation study. We train
SMF with our modified PointNet encoder without attention
(No att.) and with a vanilla PointNet encoder. As a reminder,
the baseline is evaluated on the processed (cropped, subdi-
vided) data.

5.5.1 Distribution of the Surface Error

We visualize the distribution of the surface error on the 5000
training and test scans in Fig. 21, as well as that of the base-
line.

As can be seen in Fig. 21, SMF with vanilla PointNet
has lower training set performance than the baseline, which
used a vanilla PointNet trained on cropped scans, but does
not overfit contrary to the baseline. The distributions of

Fig. 22 Ablation study on the attention mechanism: The attention
mechanism helps reduce noise and improve details on out of sample
registrations

the training error of SMF with and without attention are
extremely close, with the no attention variant actually show-
ing marginally lower error. As shown in Qi et al. (2017a),
PointNet summarizes the input point cloud with a few (at
most as many as the output dimension of the max pooling
layer) points from the input. This property makes PointNet
naturally robust to noise to some extent. When looking at
the generalization gap for the models, we can see the surface
error increased less for SMF than for themodelwithout atten-
tion, as can be further verified in Fig. 19. These observations
suggest our changes all contribute to improved performance
and improved generalization. We verify the contribution of
the attention mechanism visually in Fig. 22.We can see SMF
without attention performswell, but reconstructions are nois-
ier for the faceted scans from FRGC, and less details are
present in the test 3DMD scan. Revisiting the examples of
Fig. 2, we can also see the attention mechanism helps dis-
card sensor noise in Fig. 23, and in line 3, col. 2 of Fig. 14, in
which points inside the mouth also received attention scores
close to 0.
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Fig. 23 Revisiting the example of Fig. 2: the attention mechanism is
able to discard noisy points in badly-triangulated range scans

Fig. 24 Average mean surface error for increasing levels of noise mea-
sured on 100 randomly selected test scans from the 3DMD dataset.
Models trained without our attention mechanism are very sensitive to
random perturbations of their input, as shown by the sharp increase in
mean surface error and the large variance of the surface error, even for
low noise levels. Our models trained with attention are, on the other
hand, more resilient to corruption

5.5.2 Ambient Noise

To better showcase the contribution of the attention mecha-
nism, we now evaluate our trained models on 3DMD scans
with additional artificial noise added. Our experimental set-
ting is as follows: for a given 3DMD scan, we sample a set
P of 216 points at random on the scan. A second set U
of N points is then drawn uniformly at random in an cubic
volume containing the scan. Finally, our input point cloud X
consists of 216 points drawn uniformly at random and with-
out replacement from P ∪ U . Examples of resulting point
clouds are shown in Fig. 25 for N = 500.

We apply SMF, SMF+, SMF fc’ as well as SMF and SMF
fc’ without attention to X and measure the mean surface
error between the reconstructions and the raw scan. In total,
we repeated this procedure for 100 scans and 11 noise levels
ranging from no noise (N = 0) to substantial noise (N =
10,000). We report the results in Fig. 24.

As can be seen from Fig. 24, the models that do not have
an attention mechanism are very sensitive to noise. As little

Fig. 25 Noisy input, attention mask (green) and registration for three
models trained with attention, and 500 noisy points added prior to sam-
pling the input point cloud. Clear segmentations are obtained in all
three cases, with noise points receiving a low attention score even for
points close to the actual scan. This results in markedly more robust
registrations

as 100 random points prior to sampling the input point cloud
lead to significant deformations of the output, regardless of
the choice of decoder. This is apparent when visualizing the
registrations, e.g. for a test subject from the 3DMD dataset in
Fig. 26. On the other hand, the models trained with attention
are more robust: the surface error increases slower, and has
lower variance as indicated by the shorter error bars. Visu-
ally, the reconstructions we obtain from the noisy inputs are
indistinguishable from the noise-free inputs for low noise
levels. We note, however, that not all models with attention
learn equally good segmentations of the input point cloud.
In this particular case, our SMF model was more susceptible
to noise than SMF+ and SMF fc. We compare the attention
masks of the noisy point clouds of some models in Fig. 25,
and verify that the segmentations isolate the most relevant
points.

We will further verify that the attention mechanism
improves the quality of reconstructions on noisy out of sam-
ple scans in Sect. 6.4.

5.6 Overview

In Sects. 5.1 and 5.2, we showed SMF (and SMF+) system-
atically outperforms the baseline on landmark localization
error and offers performance competitive with NICP. Test
set performance, in particular, was markedly higher than the
current state of the art, and remained very close to the training
set error. Direct evaluation of the mean surface registration
error offers a more complete picture of the registration qual-
ity and leads to similar conclusions. Visual inspection of the
reconstructions confirms the quantitative analysis: contrary
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Fig. 26 Sample registrations for artificial ambient noise for several choices of decoders and mouth regularization. λedge = 2e− 4 for SMF fc’ and
SMF fc’ no att., and λedge = 5e − 5 for SMF fc lap. We set λlap = 1e − 3

to the baseline, SMF provides noise-free registrations which
closely match the raw scans in both identity and expression.
We showed re-sampling the scans typically lead to minor
variations in their registrations in Sect. 5.3. In Sect. 5.4, we
compared our default architecture of twomesh inception con-
volutional decoders and PCA mouth models with different
variations, namely fully-connected decoders, using a single
decoder, not using skip connections, not using anymouth reg-
ularization, or using uniform Laplacian regularization of the
mouth region. We showed our contributions provide tangible
benefits in reconstruction accuracy and robustness for noisy
raw scans data, while our framework is flexible enough to
accommodate various substitutionswhile preserving the abil-
ity of the models to generalize well to unseen data. Finally,
we evaluated the contributions of our modifications of the
PointNet encoder in Sect. 5.5. In particular, we demonstrated
that our attention mechanism markedly improves the mod-
els’ robustness to random perturbations of their input in the
form of ambient noise, regardless of our choice of decoder.
This demonstrates that our contributions to the encoding and
decoding stages are both orthogonal and complementary.

6 A Large Scale Hybrid Morphable Model

In this section, we assess the morphable model aspects of
SMF. We first study the influence of the dimension of the
identity and expression latent spaces on surface reconstruc-
tion error both in sample and out of sample. We then show
SMF can be used to quickly generate realistic synthetic faces.
In Sect. 6.3, we evaluate SMF on shape-to-shape transla-
tion applications, namely identity and expression tranfer, and

morphing. We conclude by showing SMF can be used suc-
cessfully for registration and translation fully in the wild.

6.1 Dimension of the Latent Spaces

The classical linear morphable models literature typically
reports three main metrics. Specificity is evaluated in
Sect. 6.2.1. Compactness is the proportion of the variance
retained for increasing numbers of principal components—a
direct correlate of the training error for PCA models. Gen-
eralization measures the reconstruction error on the test set
for increasing numbers of principal components. Since our
model is not linear, we instead report the training and test
performance for increasing identity and expression dimen-
sions. We choose symmetric decoders with zid and zexp of
equal dimension d. We vary d ∈ {64, 128, 256, 512}. We
measure the mean (per scan) surface reconstruction error on
the same subsets of 5000 training and 5000 test scans used in
Sect. 5. We plot the mean error across the 5000 scans along
with its 95% confidence interval obtained by bootstrapping
in Fig. 27.

As expected, both the training and test error decrease
steadily up to d = 256. For d = 512, our data shows
increased training and test error compared to d = 256. This
shows there is diminishing return in increasing the model
complexity, and bolsters our choice of d = 256 for SMF.

6.2 Generating Synthetic Faces

We now evaluate the generative ability of our SMF+ model.
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Fig. 27 Compactness and generalisation: Training and test error for
increasing number of latent dimensions

6.2.1 Specificity Error

We follow the literature and measure the specificity error as
follows: we sample 10,000 shapes at random from the joint
latent space; since our model is not explicitly trained as a
generative model, no particular structure is to be expected
on the latent space and we therefore model the empirical
distribution of the joint latent vectors of the training set with a
multivariateGaussian distribution.We estimate the empirical
mean and covariance matrix of the ≈ 54,000 joint latent
vectors and generate 10,000 Gaussian random vectors. We
apply the pre-trained decoder to obtain generated faces.1

For each of the 10,000 random faces, we find its clos-
est point in the training set in terms of minimum (over all
54,000 training registrations) of the average (over the 29,495
points in the template) vertex-to-vertex Euclidean distance.
The mean of these 10,000 distances is the specificity error
of the model. For the sake of completeness, we repeated the
experiment with the variants of SMF evaluated in Fig. 27.
We plot the specificity error and its 95% confidence interval
computed by bootstrapping in Fig. 28. Both SMF and SMF+
offer low specificity error, suggesting realistic-looking sam-
ples canbeobtained. SMF+, in particular, hasmarkedly lower
specificity error than SMF for the same latent space dimen-
sions, which confirms the benefits of training our very large
scale model on the extended training set.

6.2.2 Visualization of the Samples

We now inspect a random subset of the 10,000 samples in
Fig. 29. We render each random sample, its closest point in
the registered training set, and the raw scan from which the
registration was obtained. We can see the samples generated

1 Generating all 10,000 random faces took 55s on a single consumer-
grade GPU.

Fig. 28 Specificity error: for variants of SMF and SMF+. The speci-
ficity error is the mean distance of the sampled scans to their projection
on the registered training set

by SMF+ are highly diverse and realistic-looking: they are
close to the registrations of the training set without display-
ingmode collapse. SMF+ generates detailed faces with sharp
features across a wide range of identity, age, ethnic back-
ground, and expression, including extreme face and mouth
expressions. We further note the absence of artifacts and the
seamless blending of the mouth with the rest of the face.

6.3 Interpolation in the Latent Space

We now present a surface-to-surface translation experiment
on the training set by showing the results of expression trans-
fer and identity and expression interpolation in the latent
spaces of SMF+. Since the latent vectors are hyperspheri-
cal, care must be taken to interpolate along the geodesics on
the manifold. We therefore interpolate between two latent
vectors z1 and z2 and t ∈ [0, 1] as

zi = z1 + t(z1 − z2)
||z1 + t(z2 − z1)||2 . (23)

We select two expressive scans of two different sub-
jects, referred to as S1 and S2, from two different databases
(BU-3DFE and BU-4DFE) displaying distinct expressions
(disgust and surprise). We study three cases: simultane-
ous interpolation of identity and expression, interpolation of
identity for a fixed expression, and interpolation of expres-
sion for a fixed identity.We render points along the trajectory
defined by Equation 23 at t ∈ {0, 0.25, 0.5, 0.75, 1}. The
results of the interpolation are presented in Fig. 30.

We observe smooth interpolation in all three cases. For
simultaneous interpolation,weobtain a continuousmorphing
of the first expressive scan (t = 0) into the second expres-
sive scan (t = 1). In particular, we note that the midpoint
resembles what would be the neutral scan of a subject pre-
senting physical traits of both the source (nose, forehead) and
destination (eyes, jawline) subjects. The interpolation of the
identity vector for the fixed expression of S1 shows a smooth
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Fig. 29 Samples from SMF+: First row: Generated face obtained by sampling a random joint vector. Second row: Closest registration in the training
set. Third row: Raw scan from which the closest registration was obtained
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Fig. 30 Interpolation on the training set: joint interpolation of identity
and expression, and interpolation over one factor with the other factor
fixed

transition towards S2 while keeping the correct expression.
Conversely, interpolation between S2 and S2with the expres-

sion of S1 shows the overall identity is recognizable and
the expression displays a smooth evolution from surprise to
disgust. These results showourmodel can be used for expres-
sion transfer and smooth interpolation on the training set. In
Sect. 6.4, we evaluate SMF on surface-to-surface translation
tasks in the wild.

6.4 Face Modeling and Registration in theWild

WenowevaluateSMFon the difficult tasks of registration and
manipulation of scans found “in thewild”, i.e. in uncontrolled
environments, with arbitrary sensor types and acquisition
noise. We collected the scans of three subjects, referred to
A, B, and C, in various conditions. For subject A (male,
Caucasian), we obtained crops of two body scans, acquired
at over a year and half’s interval using two different body
capture setups that produce meshes, in two different environ-
ments. The first scan shows a crop of the subject squatting
while raising his right eyebrow, the second is of the subject
jumping with a neutral face. We further acquired four high
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Fig. 31 In the wild registrations with and without attention: the scans
of subject A were acquired over a period of two years using three differ-
ent cameras (two different body capture stages and a commodity depth
sensor in a smartphone). The scan of subject Bwas also acquired using a
smartphone depth camera, but using a lower resolution setting. The scan
of subject C is from a state of the art facial scanning light stage. SMF

provides consistent high-quality registrations even from low-resolution
scans comprising large areas of the body, hair, or background. In par-
ticular, the six scans of subject A show consistent representation of the
identity. The attention mechanism can be seen to improve details in the
registrations

density point clouds of subject A performing different facial
expressions : neutral, smiling (happy), surprise, and a “com-
plex” compound expression consisting of raising the right
eyebrow while opening and twisting the mouth to the left.
Scanning was done in an uncontrolled environment using a
commodity sensor, namely the embedded depth camera of
an iPhone 11 Pro. Subject B (female, Caucasian) was cap-
tured posing with a light smile in a different uncontrolled
environment, also with an iPhone 11 Pro, but using a lower
resolution point cloud. Finally, subject C (male, Caucasian)
was captured in a neutral pose using a state of the art light
stage setup that outputs very high resolution meshes. All in
all, the scans represent four different cameras, in five differ-
ent environments, at five different levels of detail and surface
quality, and across two different modalities (mesh and point
cloud).

We use the pre-trained SMFmodelwith andwithout atten-
tion to further extend the ablation study of Sect. 5.5. Scans
were rigidly aligned with the cropped LSFM mean using
landmarks. For meshes (body scans, light stage scan), we
sample 216 input points at random on the surface of the tri-
angular mesh. For point clouds, we select 216 points.

Figure 31 shows the raw scans, registration from SMF,
predicted attention mask for SMF, and registration for SMF

trained without visual attention. We can see SMF produced
very consistent registrations for subject A across modalities,
resolution, and time: it is clear, from the registrations, that
the scans came from the same subject, even for the low-
resolution face and shoulders region of the first body scan,
for which important facial features and the elevated position
of the right eyebrow were captured. Comparing the neu-
tral iPhone scan and the neutral body scan further shows
identity was robustly captured at the two different resolu-
tions. The highly non-linear complex expression was, also,
accurately captured, and so were the more standard happy
and surprise expressions. Performance was stable for lower-
resolution raw point clouds too as shownwith the registration
of subject B. SMF produced a sharp detailed registration of
the high quality light-stage scan of subject C, correctly cap-
turing the shape of the nose, the sharpness and inflexion of
the eyebrows, and the angle of the mouth.

Compared to SMF, SMF trained without our attention
mechanism still produced high quality registrations but with
fewer details. The two body scans and the light stage scans
show clear differences, especially in the eyes. The happy
expression of subject B was not captured as accurately, and
the shape of the face appears elongated. Looking at the
attention masks, we can see our visual attention mechanism
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Fig. 32 Interpolation, transfer, and morphing in the wild: From A “complex” to C “neutral” to C “surprised” transferred from A

discarded points from the body, the inside of the mouth (A
surprise), environment noise (C neutral), and hair and par-
tial occlusions (B happy, for which it removed most of the
glasses).
Morphing and editing in the wild We now show our pre-
trained model can be used for shape morphing and editing,
such as expression transfer, by linearly interpolating inS 255

between the predicted identity and expression vectors of the
raw scans. We select the ‘A complex”, “A surprise” and “C
neutral” scans and register both of them with our pre-trained
SMF model, keeping their predicted identity and expression
embeddings. We first interpolate the identity and expression
jointly between “A complex” and “C neutral” to produce a
smooth morphing. We then keep the identity vector fixed
to that of “C neutral” and linearly interpolate between the
expression vectors of “C neutral” and “A surprise”, this pro-
duces a smooth expression transfer. Both experiments are
shown as a continuous transformation in Fig. 32.

As apparent from Fig. 32, our model is able to smoothly
interpolate between subjects and expressions of scans cap-
tured, in the wild, across different modalities and resolutions.
Themorphing fromA complex to C neutral produces smooth
facial motions without discontinuities. Our model is further
able to, not only transfer expressions in thewild, but smoothly
interpolate between expression vectors of different subjects
for a fixed identity. The interpolation transfer again produces
a smooth natural-looking transition between the neutral scan
of C, with the mouth and eyebrows smoothly moving from
a resting position to a surprise expression, while keeping the
facial features of subject C.

7 Conclusion and FutureWork

In this paper, we present Shape My Face (SMF), a novel
learning-based algorithm that treats the registration task as a
surface-to-surface translation problem. Our model is based
on an improved point cloud encoder made highly robust with
a novel visual attention mechanism, and on our mesh incep-
tion decoders that leverage graph convolutions to learn a
compact non-linear morphable model of the human face. We
further improve robustness to noise in face scans by blend-
ing the output of the mesh convolutions with a specialized

statistical model of the mouth in a seamless way. Our model
learns to produce high quality registrations both in sample
and out of sample, thanks to the improved weight sharing
and stochastic training approach that prevent the model from
overfitting any particular discretization of the training scans.

We introduce a large scale morphable model, coined as
SMF+, by trainingSMFon9 comprehensive human3D facial
databases. Our experimental evaluation shows SMF+ can
generate thousands of diverse realistic-looking faces from
random noise across a wide range of age, ethnicities, gen-
ders, and (extreme) facial expressions. We evaluate SMF+
on shape editing and translation tasks and show our model
can be used for identity and expression transfer and interpo-
lation. Finally, we show SMF can also accurately register
and interpolate between facial scans captured in uncon-
trolled conditions for unseen subjects and sensors, allowing
for shape editing entirely in the wild. In particular, we
demonstrated smooth interpolation and transfer of expres-
sion and identity between a very high quality mesh acquired
in controlled conditions with a sophisticated facial capture
environment, and a noisy point cloud produced by consumer-
grade electronics.

Future work will investigate improving the reproduction
of high frequency details in the scans, and registering texture
and geometry simultaneously.
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