## Session III: Unknown Attacks, Additional Sensors and Practical Tips

**Host: Xiaoming Liu** 





## Outline

- Training-Testing Difference
- Alternative/Additional Sensors
- Practical Tips
- Future

## Outline

- Training-Testing Difference
- Alternative/Additional Sensors
- Practical Tips
- Future

## Training-Testing Difference

The testing scenarios are different with the training phase.

- Environment (Lighting, Indoor/outdoor, etc.)
- Camera/Image quality
- Subjects (Age, Race, etc.)
- Spoof types

## Training-Testing Difference

The testing scenarios are different with the training phase.

- Environment (Lighting, Indoor/outdoor, etc.)
- Camera/Image quality
- Subjects (Age, Race, etc.)
- Spoof types

Cross-database Domain Adaption

## Cross-database Domain Adaption

Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018 Multi-adversarial Discriminative Deep Domain Generalization, CVPR, 2019 Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing, ICB 2019 Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation, ICB 2019

#### Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

BTAS 2 19

- Learn face anti-spoofing and face recognition at the same time
- Apply a Fast Domain Adaption (FDA) to remove the bias of different domain
- Share the weights of face anti-spoofing and face recognition





### Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

• Total Pairwise Confusion (TPC) loss

$$\mathcal{L}_{tpc}(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i \neq j}^{M} ||\psi(\mathbf{x}_i) - \psi(\mathbf{x}_j)||_2^2$$

 $\psi(x)$  is the second fully connected layer of the face anti-spoofing branch

- Anti-loss: cross entropy losses for face anti-spoofing
- Recognition loss: cross entropy losses for face recognition



Li et. al., Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018

## Feature w/ and w/o TPC loss

- Remove person id information from anti-spoofing feature
  - Irrelevant to face anti-spoofing
  - May lead to a more generalized feature



BTAS

## Feature w/ and w/o TPC loss

- Remove person id information from anti-spoofing feature
  - Irrelevant to face anti-spoofing
  - May lead to a more generalized feature

| TPC/FDA | Intra | -Test | Cross-Test                |                           |  |  |
|---------|-------|-------|---------------------------|---------------------------|--|--|
| пслъ    | MFSD  |       | $MFSD \rightarrow Replay$ | Replay $\rightarrow$ MFSD |  |  |
|         | 10.5  | 0.6   | 39.4                      | 34.6                      |  |  |
| - +     | 11.2  | 0.6   | 36.3                      | 38.3                      |  |  |
| + -     | 6.4   | 0     | 28.5                      | 26.6                      |  |  |
| + +     | 8.3   | 0.3   | 25.8                      | 23.5                      |  |  |

#### Fast Domain Adaption (FDA) • Style transfer network Content loss + Style (domain) loss

$$\mathcal{L}_{\text{content}} = rac{1}{C_j H_j W_j} || \varphi_j(y) - \varphi_j(x) ||_2^2$$

$$\mathcal{L}_{\text{domain}} = \frac{1}{C_j H_j W_j} ||G_j(y) - G_j(y_d)||_F^2$$

$$\hat{y} = \underset{P}{\operatorname{arg\,min}} (\lambda_c \mathcal{L}_{\operatorname{content}}(y, x) + \lambda_s \mathcal{L}_{\operatorname{domain}}(y, y_d))$$

Learning Generalizable and Identity-Discriminative

Live



BTAS

## Testing on Oulu

| Protocol | Method    | APCER             | BPCER              | ACER               |
|----------|-----------|-------------------|--------------------|--------------------|
|          | GRADIANT  | 1.3%              | 12.5%              | 6.9%               |
| P1       | Auxiliary | 1.6%              | 1.6%               | 1.6%               |
| PI       | DS Net    | 1.2%              | 1.7%               | 1.5%               |
|          | GFA-CNN   | 2.5%              | 8.9%               | 5.7%               |
|          | Auxiliary | 2.7%              | 2.7%               | 2.7%               |
| Ρ2       | GRADIANT  | 3.1%              | 1.9%               | 2.5%               |
|          | DS Net    | 4.2%              | 4.4%               | 4.3%               |
|          | GFA-CNN   | 2.5%              | 1.3%               | 1.9%               |
|          | GRADIANT  | 2.6 <u>+</u> 3.9% | 5.0 <u>+</u> 5.3%  | 3.8 <u>+</u> 2.4%  |
| P3       | Auxiliary | 2.7 <u>+</u> 1.3% | 3.1 <u>+</u> 1.7%  | 2.9 <u>+</u> 1.5%  |
| P3       | DS Net    | 4.0 <u>+</u> 1.8% | 3.8 <u>+</u> 1.2%  | 3.6 <u>+</u> 1.6%  |
|          | GFA-CNN   | 4.3%              | 7.1%               | 5.7%               |
|          | GRADIANT  | 5.0 <u>+</u> 4.5% | 15.0 <u>+</u> 7.1% | 10.0 <u>+</u> 5.0% |
| P4       | Auxiliary | 9.3 <u>+</u> 5.6% | 10.4 <u>+</u> 6.0% | 9.5 <u>+</u> 6.0%  |
| F4       | DS Net    | 5.1 <u>+</u> 6.3% | 6.1 <u>+</u> 5.0%  | 5.6 <u>+</u> 5.7%  |
|          | GFA-CNN   | 7.4%              | 10.4%              | 8.9%               |

### Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation

- Pretrain a source encoder/decoder
- Learn a target encoder such that discriminator cannot correctly predict the domain
- Classify with k-NN classifier



BTAS



- Encoder:
  - 4 convolution blocks
  - 1 pooling layer
- Decoder:
  - 2 fully connected layers





| Method                 | $C \rightarrow I$ | $C \rightarrow M$ | $I \rightarrow C$ | $I \rightarrow M$ | $M \rightarrow C$ | $M \rightarrow I$ | Average |
|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------|
| Proposed w/o ML&ADA    | 43.8              | 33.8              | 49.5              | 41.3              | 45.4              | 39.6              | 42.2    |
| Proposed w/o ML        | 43.7              | 29.6              | 50.0              | 35.4              | 46.5              | 38.7              | 40.7    |
| Proposed w/o ADA       | 43.3              | 14.0              | 45.4              | 35.3              | 37.8              | 11.5              | 31.2    |
| Proposed (full method) | 17.5              | 9.3               | 41.6              | 30.5              | 17.7              | 5.1               | 20.3    |

# Multi-adversarial Deep Domain Generalization for Face Presentation Attack Detection

 Learn a feature space that is discriminative and shared by multiple source domains



Shao et. al., Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection, CVPR, 2019

BTAS

# Multi-adversarial Deep Domain Generalization for Face Presentation Attack Detection

- Feature generator
  - extract features for face anti-spoofing
  - adversarial-trained to remove domain information
- Depth estimation
  - improve the discriminativeness
- Dual-force triplet mining
  - enforce a smaller intra-class distance
  - enforce a larger inter-class distance
  - cross domain



BTAS

## Multi-adversarial Deep Domain Generalization for Face Presentation Attack Detection

- Learn features extractors for N domains
- Learn a feature generator for all domains
- Adversarial train N discriminators to make the feature generator more generalized.



BTAS

## **Dual-force Triplet Mining**

- In one domain
  - Minimize live-to-live / spoof-to-spoof distance between different subjects
  - Maximize live-to-spoof distance between different subjects
- Cross domains
  - Minimize live-to-live / spoof-to-spoof distance between different subjects
  - Maximize live-to-spoof distance between different subjects



## Multi-adversarial Discriminative Deep Domain Generalization

| Method                | O&C&I to M |        | O&M&I to C |        | O&C&M to I |        | I&C&M to O |        |
|-----------------------|------------|--------|------------|--------|------------|--------|------------|--------|
|                       | HTER(%)    | AUC(%) | HTER(%)    | AUC(%) | HTER(%)    | AUC(%) | HTER(%)    | AUC(%) |
| MS_LBP                | 29.76      | 78.50  | 54.28      | 44.98  | 50.30      | 51.64  | 50.29      | 49.31  |
| Binary CNN            | 29.25      | 82.87  | 34.88      | 71.94  | 34.47      | 65.88  | 29.61      | 77.54  |
| IDA                   | 66.67      | 27.86  | 55.17      | 39.05  | 28.35      | 78.25  | 54.20      | 44.59  |
| Color Texture         | 28.09      | 78.47  | 30.58      | 76.89  | 40.40      | 62.78  | 63.59      | 32.71  |
| LBPTOP                | 36.90      | 70.80  | 42.60      | 61.05  | 49.45      | 49.54  | 53.15      | 44.09  |
| Auxiliary(Depth Only) | 22.72      | 85.88  | 33.52      | 73.15  | 29.14      | 71.69  | 30.17      | 77.61  |
| Auxiliary(All)        | _          | -      | 28.4       | _      | 27.6       | _      | —          | _      |
| Ours (MADDG)          | 17.69      | 88.06  | 24.5       | 84.51  | 22.19      | 84.99  | 27.98      | 80.02  |

| Method       | O&C&I to M |        | O&M&I to C |        | O&C&    | M to I | I&C&M to O |        |  |
|--------------|------------|--------|------------|--------|---------|--------|------------|--------|--|
|              | HTER(%)    | AUC(%) | HTER(%)    | AUC(%) | HTER(%) | AUC(%) | HTER(%)    | AUC(%) |  |
| MMD-AAE      | 27.08      | 83.19  | 44.59      | 58.29  | 31.58   | 75.18  | 40.98      | 63.08  |  |
| Ours (MADDG) | 17.69      | 88.06  | 24.5       | 84.51  | 22.19   | 84.99  | 27.98      | 80.02  |  |

BTAS

### Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing

- Use multi-modality data (RGB, NIR, and Depth) instead of RGB only
- Domain Adaption: fine-tuning (RGB  $\rightarrow$  NIR-Depth)



BTAS

### Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing



ACER 43.74 32.74 15.28 8.47 7.54 18.5 21.82 6.26 12.48 3.44 11.44

| Bona-fide samples<br>6 different sessions |             | PAI samples              |                                              |       |       |       |          |
|-------------------------------------------|-------------|--------------------------|----------------------------------------------|-------|-------|-------|----------|
|                                           |             |                          | Method                                       | dev   | (%)   |       | test (%) |
|                                           |             |                          |                                              | APCER | ACER  | APCER | BPCER    |
|                                           |             |                          | Color (IQM-LR)                               | 76.58 | 38.79 | 87.49 | 0        |
|                                           |             |                          | Depth (LBP-LR)                               | 57.71 | 29.35 | 65.45 | 0.03     |
|                                           |             |                          | Infrared (LBP-LR)                            | 32.79 | 16.9  | 29.39 | 1.18     |
|                                           |             | Drint Donlay False hand  | Thermal (LBP-LR)                             | 11.79 | 6.4   | 16.43 | 0.5      |
|                                           | Glasses 1   | Print Replay Fake head   | Score fusion (IQM-LBP-LR Mean fusion)        | 10.52 | 5.76  | 13.92 | 1.17     |
|                                           |             |                          | Color (RDWT-Haralick-SVM)                    | 36.02 | 18.51 | 35.34 | 1.67     |
|                                           |             |                          | Depth (RDWT-Haralick-SVM)                    | 34.71 | 17.85 | 43.07 | 0.57     |
| 00 00 00                                  |             |                          | Infrared (RDWT-Haralick-SVM)                 | 14.03 | 7.51  | 12.47 | 0.05     |
|                                           |             |                          | Thermal (RDWT-Haralick-SVM)                  | 21.51 | 11.26 | 24.11 | 0.85     |
|                                           |             |                          | Score fusion (RDWT-Haralick-SVM Mean fusion) | 6.2   | 3.6   | 6.39  | 0.49     |
|                                           |             |                          | FASNet                                       | 18.89 | 9.94  | 17.22 | 5.65     |
|                                           | Rigid masks | Flexible mask Paper mask |                                              |       |       |       |          |

## Unknown Attack Detection

BTAS 2 19

- One-class SVM
- Gaussian Mixture Model
- AutoEncoder

## Unknown Attack Detection

An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol, IEEE Access, 2017

Unknown Presentation Attack Detection with Face RGB Images, ICB, 2018

Deep Anomaly Detection for Generalized Face Anti-Spoofing, CVPRW, 2019

**Deep Tree Learning for Zero-shot Face Anti-Spoofing**, CVPR 2019

An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol BTAS 2 19

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: LBP-TOP, LPQ-TOP, BSIF-TOP, Image quality measures
- Classifier: SVM1, SVM2, LDA2, Sparse representation classifier (SRC)1, SRC 2
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol **BTAS** 2 **⊚**19

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: LBP-TOP, LPQ-TOP, BSIF-TOP, Image quality measures
- Classifier: SVM1, SVM2, LDA2, Sparse representation classifier (SRC)1, SRC 2
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

 Conclusion: neither the two-class systems nor the one-class approaches perform well enough

#### Unknown Presentation Attack Detection with Face RGB Images

BTAS 2 19

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: Color LBP
- Classifier: SVM1, Auto Encoder, GMM
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

#### Unknown Presentation Attack Detection with Face RGB Images

|                             | CASIA |           |              | Replay-Atta |               | All           |               |          |              |       |       |
|-----------------------------|-------|-----------|--------------|-------------|---------------|---------------|---------------|----------|--------------|-------|-------|
|                             | Video | Cut Photo | Warped Photo | Video       | Digital Photo | Printed Photo | Printed Photo | HR Video | Mobile Video | Mean  | Std   |
| $OC-SVM_{RBF} + IMQ[1]$     | 68.89 | 61.95     | 74.80        | 98.24       | 90.82         | 53.23         | 63.94         | 63.00    | 76.38        | 72.80 | 14.48 |
| $OC-SVM_{RBF} + BSIF[1]$    | 70.74 | 60.73     | 95.90        | 84.03       | 88.14         | 73.66         | 64.81         | 87.44    | 74.69        | 78.68 | 11.74 |
| $SVM_{RBF} + LBP[5]$        | 91.49 | 91.70     | 84.47        | 99.08       | 98.17         | 87.28         | 47.68         | 99.50    | 97.61        | 88.55 | 16.25 |
| NN + LBP                    | 94.16 | 88.39     | 79.85        | 99.75       | 95.17         | 78.86         | 50.57         | 99.93    | 93.54        | 86.69 | 15.56 |
| GMM + LBP                   | 90.91 | 77.52     | 62.61        | 93.20       | 87.80         | 89.19         | 68.18         | 91.21    | 94.04        | 83.85 | 11.60 |
| OC-SVM <sub>RBF</sub> + LBP | 91.21 | 82.32     | 65.58        | 91.55       | 84.97         | 87.19         | 71.46         | 96.89    | 93.57        | 84.97 | 10.42 |
| AE + LBP                    | 87.00 | 80.48     | 65.84        | 88.62       | 84.67         | 85.09         | 71.25         | 96.00    | 95.64        | 83.84 | 10.10 |

• Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

- Conclusion: improve the performance
  - NN+LBP works best on C+R+M protocols
  - AE+LBP works best on Oulu protocols

BTAS

#### Deep Anomaly Detection for Generalized Face Anti-Spoofing

- Deep metric learning
- Triplet Focal loss
  - Focus on the harder cases





#### Literature and Issues

- Limited Spoof Types<sup>1,2</sup>
- Only model the live distribution<sup>1,2</sup>



BTAS

### What if More Spoof Types?



Print

Makeup Attacks

Partial Attacks

## BTASDeep Tree Learning for Zero-shot Face Anti-Spoofing2 2 19

- Previous methods only model the live
- Learning semantic spoof attributes





## Deep Tree Networks (DTN)



## Deep Tree Networks (DTN)



## Deep Tree Networks (DTN)



# Deep Tree Networks (DTN)



# Deep Tree Networks (DTN)



### Supervised Feature Learning







### Supervised Feature Learning





CRU

GR SF

CR SF

CR





## Training TRU





# Tree Routing Unit (TRU)

Routing Function

$$\varphi(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu})^T \cdot \mathbf{v}, \quad \|\mathbf{v}\| = 1$$

Feature Space

• Based on eigen-analysis of visiting set  $\bar{X}_{S} = X_{S} - \mu$ 

 $\mathcal{Z}$ 

$$\bar{\boldsymbol{X}}_{\mathcal{S}}^T \bar{\boldsymbol{X}}_{\mathcal{S}} \boldsymbol{v} = \lambda \boldsymbol{v}$$

• We optimize:

$$\underset{\boldsymbol{\nu},\theta}{\operatorname{arg\,max}} \lambda = \underset{\boldsymbol{\nu},\theta}{\operatorname{arg\,max}} \boldsymbol{\nu}^T \bar{\boldsymbol{X}}_{\mathcal{S}}^T \bar{\boldsymbol{X}}_{\mathcal{S}} \boldsymbol{\nu}$$





### Results

• Evaluation Metrics: ACER (the lower the better)

|                        |        |       |      | N        | lask Atta | cks   |        | N       | lakeup Atta | cks      | Partial Attacks |                  |                  |                    |
|------------------------|--------|-------|------|----------|-----------|-------|--------|---------|-------------|----------|-----------------|------------------|------------------|--------------------|
| Methods Replay         | Replay | Print | Half | Silicone | Trans.    | Paper | Manne. | Obfusc. | Imperson.   | Cosmetic | Funny<br>eye    | Paper<br>Glasses | Partial<br>Paper | Avg.               |
| SVM+LBP <sup>1</sup>   | 20.6   | 18.4  | 31.3 | 21.4     | 45.5      | 11.6  | 13.8   | 59.3    | 23.9        | 16.7     | 35.9            | 39.2             | 11.7             | 26.9±14.5          |
| Auxiliary <sup>2</sup> | 16.8   | 6.9   | 19.3 | 14.9     | 52.1      | 8.0   | 12.8   | 55.8    | 13.7        | 11.7     | 49.0            | 40.5             | 5.3              | 23.6 <u>+</u> 18.5 |
| Ours                   | 9.8    | 6.0   | 15.0 | 18.7     | 36.0      | 4.5   | 7.7    | 48.1    | 11.4        | 14.2     | 19.3            | 19.8             | 8.5              | 16.8±11.1          |

ACER = (Spoof Error Rate (APCER) + Live Error Rate (BPCER))/2

[1] Z. Boulkenafet et. al. OULU-NPU: A mobile face presentation attack database with real-world variations. In FG, 2017.

[2] Y. Liu et. al. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In CVPR, 2018.

### Results

• Evaluation Metrics: EER (the lower the better)

|               |        |       |      | N        | lask Atta | cks   |        | N       | /lakeup Atta | cks      | Partial Attacks |                  |                  |           |
|---------------|--------|-------|------|----------|-----------|-------|--------|---------|--------------|----------|-----------------|------------------|------------------|-----------|
| Methods Repla | Replay | Print | Half | Silicone | Trans.    | Paper | Manne. | Obfusc. | Imperson.    | Cosmetic | Funny<br>eye    | Paper<br>Glasses | Partial<br>Paper | Avg.      |
| SVM+LBP       | 20.8   | 18.6  | 36.3 | 21.4     | 37.2      | 7.5   | 14.1   | 51.2    | 19.8         | 16.1     | 34.4            | 33.0             | 7.9              | 24.5±12.9 |
| Auxiliary     | 14.0   | 4.3   | 11.6 | 12.9     | 24.6      | 7.8   | 10.0   | 72.3    | 10.1         | 9.4      | 21.4            | 18.6             | 4.0              | 17.0±17.7 |
| Ours          | 10.0   | 2.1   | 14.4 | 18.6     | 26.5      | 5.7   | 9.6    | 50.1    | 10.1         | 13.2     | 19.8            | 20.5             | 8.8              | 16.1±12.2 |

[1] Z. Boulkenafet et. al. OULU-NPU: A mobile face presentation attack database with real-world variations. In FG, 2017.

[2] Y. Liu et. al. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In CVPR, 2018.



# Outline

- Training-Testing difference
- Alternative/Additional Sensors
- Practical Tips
- Future

BTAS

# Light Reflection

- Skin and spoof material have different reflection properties:
  - Reflectance
  - 3D shape



## Additional Sensors

- NIR
  - Human skin has different reflectance compared with spoof material
- Depth
- Thermal
- Multi-modality







# Others

- Light field
- Polarized camera
- Structured Light
  - NIR with specific pattern (iPhone X)
- ToF (Time of flight)
  - Multi-point distance measurement







BTAS

# Question for Additional Sensors

• Data << RGB Data

# Outline

- Training/Testing difference
- Alternative/Additional Sensors
- Practical Tips
- Future

BTAS

2 19

### Data are Your Friend

- More data  $\rightarrow$  better performance
- Data augmentation (session II)
- (Efficient, effective) data collection

# Updating Systems

- Use current model to collect failure cases
- Add failure cases to training set to fine-tune the model
- Update the current model
- Repeat several times



# Updating Systems

- Manage the training data, not just mix everything
  - Eg. Base data 80%, New data 20%
  - Add subclasses based on lighting, walking and etc



## Image Quality is the Devil

- Image resolution
- JPEG compression
  - Check the image bitrate
- Dark environment  $\rightarrow$  ISO noise



56

BTAS

2 19

### Image Quality is the Devil



- Image resolution
- JPEG compression
  - Check the image bitrate
- Dark environment  $\rightarrow$  ISO noise

| ISO 160 | 150 320 | 150 640 | ISO 100 | 150 200 | 150 400 | 150 600 | 150 1250 | 150 125 | 150 25 |
|---------|---------|---------|---------|---------|---------|---------|----------|---------|--------|
|         |         |         |         |         |         |         |          |         |        |

# Outline

- Training/Testing difference
- Alternative/Additional Sensors
- Practical Tips
- Summary and Future

BTAS

2 19

### **Unsolved Problems**

- Training/Testing difference
- Explainablity
- New attacks
- Unknown attack
- Data and evaluation

# Problem 1: Training-Testing Difference

- Cross-database testing performances are still poor
  - EER for intra-testing: ~ 0% 5%
  - EER for inter-testing: ~ 15% 50%
- Can we use few-shot learning to improve the cross-database testing?

# Problem 2: Explainablity

BTAS 2 19

- Spatial explainablity
- Temporal explainablity
- Spoofing process explainablity
- Research on camera and imaging

### Problem 3: New Attacks

- Makeup attacks
- Counter attacks to current methods
  - 3D mask attacks with flashing light  $\rightarrow$  rPPG methods
  - Adversarial attacks  $\rightarrow$  Texture based methods

# Problem 4: Unknown Attacks

- Similar situation to cross-database testing
- Can we leverage the knowledge from other unknown object detection tasks?
- Identity variations > anti-spoofing variation

# Problem 5: Data and Evaluation

- Intra-testing protocols too easy
- Inter-testing protocols too hard
- Represent previous problems as the testing protocols

## Summary

- What and why face anti-spoofing?
- Traditional methods
- Deep learning methods
- Unknown attacks
- Additional sensors
- Practical tips