Session II: Deep Learning Approaches for Face Anti-spoofing

Host: Yaojie Liu

Outline

- Vanilla CNNs
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data augmentation

Outline

- Vanilla CNN
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data Augmentation

Vanilla CNNs

BTAS 2 19

CNN is trained to do a binary classification: live vs spoof

Vanilla CNNs

Learn Convolutional Neural Network for Face Anti-Spoofing, ArXiv, 2014

Learning temporal features using LSTM-CNN architecture for face anti-spoofing, ACPR, 2015 Integration of image quality and motion cues for face anti-spoofing: A neural network approach, JVCI, 2016 An Original Face Anti-spoofing Approach using Partial Convolutional Neural Network, IPTA, 2016 Cross-database face antispoofing with robust feature representation. CCBR, 2016

Vanilla CNNs

Learn Convolutional Neural Network for Face Anti-Spoofing, ArXiv, 2014 Learning temporal features using LSTM-CNN architecture for face anti-spoofing, ACPR, 2015 Integration of image quality and motion cues for face anti-spoofing: A neural network approach, JVCI, 2016 An Original Face Anti-spoofing Approach using Partial Convolutional Neural Network, IPTA, 2016 Cross-database face antispoofing with robust feature representation. CCBR, 2016

Learn Convolutional Neural Network for Face Anti-spoofing

- CNN feature + SVM classifier
- Examine the influence of face scale

Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.

BTAS

2 19

Conclusion of Face Scales

- Too small: very limited information
 →worse performance
- Too big: too much information → worse performance
- Varies from case to case
 - CASIA is best at medium res.
 - Replay is best at the largest res.

BTAS

2 19

Learning Temporal Features using LSTM-CNN Architecture for Face Anti-spoofing

BTAS 2 19

- CNN + LSTM
- Consider temporal information

Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.

Integration of Image Quality and Motion Cues for Face Anti-spoofing: A Neural Network Approach

- Use handcrafted features as input
 - Shearlet-based image quality
 - Face optical flow
 - Scene optical flow

Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.

BTAS

2 19

Experiment Results

CASIA Dataset	EER	HTER
Color LBP ^[1]	6.2	-
CNN + SVM ^[2]	-	6.25
CNN + LSTM ^[3]	-	5.93
Multi-cue CNN ^[4]	5.83	-

Replay Dataset	EER	HTER
Color LBP ^[1]	0.4	2.9
CNN + SVM ^[2]	-	2.68
CNN + LSTM ^[3]	-	-
Multi-cue CNN ^[4]	-	0

[1] Boulkenafet et. al., Face antispoofing based on color texture analysis. ICIP 2015

[2] Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.

[3] Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.

[4] Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.

Summary

- Fusing inputs (scale, handcrafted features, etc.) can help
- Improve the overall performance compared to non-CNN methods
- Binary classifier might lead to overfitting

Outline

- Vanilla CNNs
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data Augmentation

Patch-based CNNs

Face Anti-Spoofing Using Patch and Depth-Based CNNs, IJCB, 2017

On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018

Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019

Patch-based CNNs

Face Anti-Spoofing Using Patch and Depth-Based CNNs, IJCB, 2017

On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018

Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019

Motivation

- Prevent overfitting
 - Increase the number of training samples

Patch CNN

- Input face: RGB+HSV, patch size 96*96
- Patch CNN: classify each patch as a live or spoof patch
- Fuse the score by average

Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu, Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Experiment Results

CASIA Dataset	EER	HTER
Color LBP ^[1]	6.2	-
CNN + SVM ^[2]	-	6.25
CNN + LSTM ^[3]	-	5.93
Multi-cue CNN ^[4]	5.83	-
Patch CNN + Depth CNN ^[5]	2.67	2.27
Replay Dataset	EER	HTER
Replay Dataset Color LBP ^[1]	EER 0.4	HTER 2.9
Replay DatasetColor LBP ^[1] CNN + SVIM ^[2]	EER 0.4 -	HTER 2.9 2.68
Replay DatasetColor LBP ^[1] CNN + SVM ^[2] CNN + LSTM ^[3]	EER 0.4 - -	HTER 2.9 2.68 -
Replay DatasetColor LBP ^[1] CNN + SVM ^[2] CNN + LSTM ^[3] Multi-cue CNN ^[4]	EER 0.4 - - -	HTER 2.9 2.68 - 0

* Only use tight cropped face

[1] Boulkenafet et. al., Face antispoofing based on color texture analysis. ICIP 2015

[2] Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.

[3] Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.

[4] Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.

[5] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu, Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Patch-based CNNs

Face Anti-Spoofing Using Patch and Depth-Based CNNs, IJCB, 2017

On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018

Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019

STASN

- Temporal Anti-Spoofing Module (TASM): conv-LSTM
- Region Attention Module (RAM): locating the discriminative and significant sub-regions
- Spatial Anti-Spoofing Module (SASM): patch CNN

Region Attention Module (RAM)

Locates the discriminative and significant sub-regions

• RAM output 2*K parameters: offsets and translation of K patches

BTAS 2 19

Examples of Attention

- Live attentions are on face
- Spoof attentions are diverse

Drawbacks

- Trade-off between efficiency and performance (more patches or less?)
- Not end-to-end training
- Patch scale

Outline

- Vanilla CNNs
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data Augmentation

CNN Methods with Auxiliary Supervisions

Auxiliary information: signals/biometric features with distinctive difference between live and spoof

- Depth map
- Heart beat signal (rPPG)
- Optical flow
- ...

Why Auxiliary Supervision?

- Provide specific attention for CNN
- Make CNN explainable

Depth Map

- Provide specific attention for CNN
- Make CNN explainable

Methods using Depth Map

Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019 Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

Methods using Depth Map

Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019 Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

Overall Architecture

- Spatial supervision: depth map
- Temporal supervision: rPPG signal

BTAS 2 \vert 19

Depth Map CNN

- RGB+HSV as input
- Fully convolutional network
- Short-cut connection to fuse multi-scale features
- Depth map regression loss: $\mathcal{L}_{depth} = \|D_{pred} D_0\|_F^1$

How to Obtain Depth Map Label?

- Depth for live faces: 3D face fitting* + z-buffering rendering
- Depth for spoof faces: zero maps

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. *CVPR 2018.* *Yaojie Liu, Amin Jourabloo, William Ren, and Xiaoming Liu. Dense Face Alignment. *ICCVW 2017.*

Explainablity

• Indicate the regions of spoof material

Why Depth Maps Work?

- Local response (same rationale with Patch GAN)
- More elegant than patch-based CNNs (even multiscales!)
- Depth map vs. zero/one map
 - Focus on the face region
 - Noisy background may lead to a worse convergence

BTAS

2 19

rPPG Temporal Signal

- Provide specific attention for CNN
- Make CNN explainable

What is rPPG?

• Remote photoplethysmography: heart beat measurement from human skin using a non-contact camera

mask Leve epidermis dermis subcutaneous capillary vessel

Live Face

3D Mask Spoof Face

Print/Replay Spoof Face

Methods using rPPG

3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Methods using rPPG

3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Overall Architecture

- Spatial supervision: depth map
- Temporal supervision: rPPG signal

BTAS

2 19

Overall RNN Architecture

- CNN features as input
- Use non-rigid registration layer to align the features
- LSTM + FFT to predict rPPG

BTAS

2 19

Non-rigid Registration Layer

- Use 3D shape to compute offset
- Use offset to deform the features
- Differentiable

How to Obtain rPPG Label?

• Live faces: from off-the-shelf method*

 $S = c_1 R_n + c_2 G_n + c_3 B_n$

 $C_{ni} = \frac{C_i}{\mu(C_i)}$

• Spoof faces: Direct assignment as zero

10

20

30

40

Oulu NPU Dataset

Protocol	Method	APCER	BPCER	ACER
P1	CPqD	2.9%	10.8%	6.9%
	GRADIANT	1.3%	12.5%	6.9%
	Auxiliary	1.6%	1.6%	1.6%
P2	MixedFASNet	9.7%	2.5%	6.1%
	Auxiliary	2.7%	2.7%	2.7%
	GRADIANT	3.1%	1.9%	2.5%
Р3	MixedFASNet	5.3 <u>+</u> 6.7%	7.8 <u>+</u> 5.5%	6.5 <u>+</u> 4.6%
	GRADIANT	2.6 <u>+</u> 3.9%	5.0 <u>+</u> 5.3%	3.8 <u>+</u> 2.4%
	Auxiliary	2.7 <u>+</u> 1.3%	3.1 <u>+</u> 1.7%	2.9 <u>+</u> 1.5%
P4	Massy_HNU	35.8 <u>+</u> 35.3	8.3 <u>+</u> 4.1%	22.1 <u>+</u> 17.6%
	GRADIANT	5.0 <u>+</u> 4.5%	15.0 <u>+</u> 7.1%	10.0 <u>+</u> 5.0%
	Auxiliary	9.3 <u>+</u> 5.6%	10.4 <u>+</u> 6.0%	9.5 <u>+</u> 6.0%

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.

Oulu NPU Dataset

Cross-test on CASIA and IDIAP (HTER)

Method	Train	Test	Train	Test	
	CASIA MFSD	Replay Attack	Replay Attack	CASIA MFSD	
Motion	50	50.2%		47.9%	
LBP	55.9% 49.7% 50.1%		57.6%		
LBP-TOP			60.6%		
Motion-Mag			47.0%		
Spectral cubes	34	34.4% 48.5%		50.0%	
CNN	48			%	
LBP	47.0%		39.6%		
Color Texture	30	30.3%		%	
Proposed method	27.6%		28.4%		

Methods using Depth Map

Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019 Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

46

Exploiting Temporal and Depth Information for $3 \ 2 \ 19$ Multi-frame Face Anti-spoofing

- Map single frame to depth map
- Introduce frame-to-frame motion to complete depth map
- Concat all maps to get a final score

Wang et. al., Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Temporal Blocks

- Short-term motion: OFF Block
- Long-term motion: multi-scale OFF feature to Conv Gated Recurrent Unit (GRU)

Outline

- Vanilla CNNs
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data Augmentation

Motivations

- Model the spoof patterns as noise
- De-spoofing: Decompose the spoof noise for face anti-spoofing.

A Case Study

- Careful alignment the spoof with the live
- Subtraction live from spoof
- FFT analysis

The Cause of Spoof Noise Pattern?

- Color distortion
- Display artifacts
- Presenting artifacts
- Imaging artifacts

Properties of the Spoof Noise Pattern

- Repetitive
- Ubiquitous

$$\mathbf{x} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{n} = \hat{\mathbf{x}} + (\mathbf{A} - \mathbb{I})\hat{\mathbf{x}} + \mathbf{n} = \hat{\mathbf{x}} + N(\hat{\mathbf{x}})$$

Overall Architecture

- BTAS 2 19
- De-Spoofing Net: estimate spoof noise pattern N and reconstruct live image I
- Discriminative Quality Net: guarantee reconstructed I is live
- Visual Quality Net: guarantee reconstructed I is photorealistic

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.

Training

De-Spoofing Net: Estimate spoof noise pattern N and reconstruct live image I

• Repetitive loss

$$J_r = \begin{cases} -\max(H(\mathcal{F}(\mathbf{N}), k)), \ \mathbf{I} \in Spoof\\ \|\max(H(\mathcal{F}(\mathbf{N}), k))\|_1, \ \mathbf{I} \in Live \end{cases}$$

• Ubiquitous loss: zero/one map loss

$$J_m = \left\| \mathbf{N}
ight\|_1$$
 , for live

Training

BTAS 2 19

Discriminative Quality Net: guarantee reconstructed I is live

• Depth map loss

$$J_{DQ} = \left\| \mathbf{CNN}_{DQ}(\mathbf{\hat{I}}) - \mathbf{D} \right\|_{2}$$

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.

Training

Visual Quality Net: guarantee reconstructed I is photorealistic

• GAN loss

$$J_{VQ_{train}} = -\mathbb{E}_{\mathbf{I} \in \mathcal{R}} \log(\mathrm{CNN}_{VQ}(\mathbf{I})) - \mathbb{E}_{\mathbf{I} \in \mathcal{S}} \log(1 - \mathrm{CNN}_{VQ}(\mathrm{CNN}_{DS}(\mathbf{I})))$$

Noise Classification

Predicted Actual	live	print	display
live	59	1	0
print	0	88	32
display	13	8	99

Predicted Actual	live	print1	print2	display1	display2
live	59	0	1	0	0
print1	0	41	2	11	6
print2	0	34	11	9	6
display1	10	6	0	13	31
display2	8	7	0	6	39

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.

Results of Live

Results of Spoof

Testing on Oulu

Protocol	Method	APCER	BPCER	ACER
	CPqD	2.9%	10.8%	6.9%
D1	GRADIANT	1.3%	12.5%	6.9%
PI	Auxiliary	1.6%	1.6%	1.6%
	DS Net	1.2%	1.7%	1.5%
	MixedFASNet	9.7%	2.5%	6.1%
20	Auxiliary	2.7%	2.7%	2.7%
P2	GRADIANT	3.1%	1.9%	2.5%
	DS Net	4.2%	4.4%	4.3%
	MixedFASNet	5.3 <u>+</u> 6.7%	7.8 <u>+</u> 5.5%	6.5 <u>+</u> 4.6%
20	GRADIANT	2.6 <u>+</u> 3.9%	5.0 <u>+</u> 5.3%	3.8 <u>+</u> 2.4%
P3	Auxiliary	2.7 <u>+</u> 1.3%	3.1 <u>+</u> 1.7%	2.9 <u>+</u> 1.5%
	DS Net	4.0 <u>+</u> 1.8%	3.8 <u>+</u> 1.2%	3.6 <u>+</u> 1.6%
	Massy_HNU	35.8 <u>+</u> 35.3	8.3 <u>+</u> 4.1%	22.1 <u>+</u> 17.6%
D4	GRADIANT	5.0<u>+</u>4.5 %	15.0 <u>+</u> 7.1%	10.0 <u>+</u> 5.0%
۲4	Auxiliary	9.3 <u>+</u> 5.6%	10.4 <u>+</u> 6.0%	9.5 <u>+</u> 6.0%
	DS Net	5.1 <u>+</u> 6.3%	6.1 <u>+</u> 5.0%	5.6 <u>+</u> 5.7%

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.

BTAS 2 ⊚ 19

Outline

- Vanilla CNNs
- Patch-based CNN methods
- CNN methods with auxiliary supervisions
- GAN-based noise modeling
- Data Augmentation

Data Augmentations

Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019
Presentation Attack Detection for Face in Mobile Phones, Selfie Biometrics, 2019
Style Transfer Applied to Face Liveness Detection with User-Centered Models, arXiv, 2019
Improving Face Anti-Spoofing by 3D Virtual Synthesis, arXiv, 2019

Face Anti-Spoofing: Model Matters, So Does Data

Synthesize

- Blurriness: random strength Gaussian blurring
- Reflection: $\mathbf{X}'_r = (1 \alpha) \mathbf{X}' + \alpha \mathbf{X}_r$
- Distortion: Perspective projection

Yang et. al., Face Anti-Spoofing: Model Matters, So Does Data, CVPR 2019

Presentation Attack Detection for Face in Mobile Phones

Random perturbation:

- Contrast
- Lightness

Liu et. al., Presentation Attack Detection for Face in Mobile Phones, Selfie Biometrics, 2019

BTAS

2 19

Style Transfer

Use CNN for data augmentation

BTAS

2 19

Laurensi et. al., Style Transfer Applied to Face Liveness Detection with User-Centered Models, arXiv, 2019

3D Synthesis

BTAS 2 19

Use CNN to deform the face based on 3D shape

BTAS 2 ⊚ 19

Summary

- We review deep learning based methods
- Binary CNN may lead to overfitting
- Advanced design is required
 - Multiple input features
 - Auxiliary supervision
 - Noise modeling
 - Data augmentation

End of Session II

Q & A

End of Session II

15 Minutes Break.

