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Outline

• Vanilla CNNs
• Patch-based CNN methods
• CNN methods with auxiliary supervisions
• GAN-based noise modeling
• Data augmentation
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Vanilla CNNs

CNN is trained to do a binary classification: live vs spoof

Live Face

Presentation 
Attack

Binary
Supervision

0

1
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Vanilla CNNs
Learn Convolutional Neural Network for Face Anti-Spoofing,  ArXiv, 2014
Learning temporal features using LSTM-CNN architecture for face anti-spoofing,  ACPR, 2015
Integration of image quality and motion cues for face anti-spoofing: A neural network approach, JVCI, 2016
An Original Face Anti-spoofing Approach using Partial Convolutional Neural Network, IPTA, 2016
Cross-database face antispoofing with robust feature representation. CCBR, 2016
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Learn Convolutional Neural Network for Face 
Anti-spoofing
• CNN feature + SVM classifier

• Examine the influence of face scale

Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.
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Conclusion of Face Scales

• Too small: very limited information 

àworse performance

• Too big: too much information à worse 

performance

• Varies from case to case

• CASIA is best at medium res.

• Replay is best at the largest res.

Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.
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Learning Temporal Features using LSTM-CNN 
Architecture for Face Anti-spoofing
• CNN + LSTM

• Consider temporal information

Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.
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Integration of Image Quality and Motion Cues for 
Face Anti-spoofing: A Neural Network Approach

• Use handcrafted features as input

• Shearlet-based image quality

• Face optical flow

• Scene optical flow

Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.
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Experiment Results
CASIA Dataset EER HTER

Color LBP[1] 6.2 -

CNN + SVM[2] - 6.25

CNN + LSTM[3] - 5.93

Multi-cue CNN[4] 5.83 -

[1] Boulkenafet et. al., Face antispoofing based on color texture analysis. ICIP 2015
[2] Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.
[3] Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.
[4] Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.

Replay Dataset EER HTER
Color LBP[1] 0.4 2.9

CNN + SVM[2] - 2.68

CNN + LSTM[3] - -

Multi-cue CNN[4] - 0
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Summary

• Fusing inputs (scale, handcrafted features, etc.) can help

• Improve the overall performance compared to non-CNN methods

• Binary classifier might lead to overfitting
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Outline

• Vanilla CNNs
• Patch-based CNN methods
• CNN methods with auxiliary supervisions
• GAN-based noise modeling
• Data Augmentation
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Patch-based CNNs
Face Anti-Spoofing Using Patch and Depth-Based CNNs,  IJCB, 2017
On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018
Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019
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Patch-based CNNs
Face Anti-Spoofing Using Patch and Depth-Based CNNs,  IJCB, 2017
On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018
Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019
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Motivation

Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu, Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

• Prevent overfitting
• Increase the number of training samples
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Patch CNN

Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu, Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

• Input face: RGB+HSV, patch size 96*96
• Patch CNN: classify each patch as a live or spoof patch
• Fuse the score by average
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Experiment Results
CASIA Dataset EER HTER

Color LBP
[1]

6.2 -

CNN + SVM
[2]

- 6.25

CNN + LSTM
[3]

- 5.93

Multi-cue CNN
[4]

5.83 -

Patch CNN + Depth CNN
[5]

2.67 2.27

[1] Boulkenafet et. al., Face antispoofing based on color texture analysis. ICIP 2015

[2] Yang et. al., Learn Convolutional Neural Network for Face Anti-Spoofing. arXiv 2014.

[3] Xu et. al., Learning temporal features using LSTM-CNN architecture for face anti-spoofing. ACPR 2015.

[4] Feng et. al., Integration of image quality and motion cues for face anti-spoofing: A neural network approach. JVCI 2016.

[5] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu, Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Replay Dataset EER HTER
Color LBP

[1]
0.4 2.9

CNN + SVM
[2]

- 2.68

CNN + LSTM
[3]

- -

Multi-cue CNN
[4]

- 0

Patch CNN + Depth CNN
[5]*

0.79 0.72
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Patch-based CNNs
Face Anti-Spoofing Using Patch and Depth-Based CNNs,  IJCB, 2017
On the Learning of Deep Local Features for Robust Face Spoofing Detection, SIBGRAPI, 2018
Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019
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STASN
• Temporal Anti-Spoofing Module (TASM): conv-LSTM
• Region Attention Module (RAM): locating the discriminative and significant sub-regions
• Spatial Anti-Spoofing Module (SASM): patch CNN

Yang et. al., Face Anti-Spoofing: Model Matters, So Does Data, CVPR 2019
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Region Attention Module (RAM)
Locates the discriminative and significant sub-regions

• RAM output 2*K parameters: offsets and translation of K patches

Yang et. al., Face Anti-Spoofing: Model Matters, So Does Data, CVPR 2019
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Examples of Attention
• Live attentions are on face
• Spoof attentions are diverse

Yang et. al., Face Anti-Spoofing: Model Matters, So Does Data, CVPR 2019
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Drawbacks
• Trade-off between efficiency and performance (more patches or less?)
• Not end-to-end training
• Patch scale 
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Outline

• Vanilla CNNs
• Patch-based CNN methods
• CNN methods with auxiliary supervisions
• GAN-based noise modeling
• Data Augmentation
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CNN Methods with Auxiliary Supervisions

Auxiliary information: signals/biometric

features with distinctive difference 

between live and spoof 

• Depth map

• Heart beat signal (rPPG)

• Optical flow

• …

Live

Spoof✗ Binary
Supervision

0

1
✓ Auxiliary

Supervision

Spatial Temporal

…

…
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Why Auxiliary Supervision?

• Provide specific attention for CNN

• Make CNN explainable

Live

Spoof✗ Binary
Supervision

0

1
✓ Auxiliary

Supervision

Spatial Temporal

…

…
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Depth Map

• Provide specific attention for CNN

• Make CNN explainable

Live

Spoof✗ Binary
Supervision

0

1
✓ Auxiliary

Supervision

Depth map Temporal

…

…
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Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. 

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019

Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

28
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Methods using Depth Map
Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. 

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019

Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

…

29



Overall Architecture
• Spatial supervision: depth map

• Temporal supervision: rPPG signal

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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• RGB+HSV as input

• Fully convolutional network

• Short-cut connection to fuse multi-scale features

• Depth map regression loss: ℒ"#$%& = ($)#" − (+ ,
-

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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How to Obtain Depth Map Label?

3D Fitting Depth MapLive

Prior

Spoof Depth Map

• Depth for live faces: 3D face fitting* + z-buffering rendering

• Depth for spoof faces: zero maps

*Yaojie Liu, Amin Jourabloo, William Ren, and Xiaoming Liu. Dense Face Alignment. ICCVW 2017.
Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018. 32



Explainablity

• Indicate the regions of spoof material

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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Why Depth Maps Work?
• Local response (same rationale with Patch GAN)

• More elegant than patch-based CNNs (even multiscales!) 

• Depth map vs. zero/one map

• Focus on the face region

• Noisy background may lead to a worse convergence

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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rPPG Temporal Signal

• Provide specific attention for CNN

• Make CNN explainable

Live

Spoof✗ Binary
Supervision

0

1
✓ Auxiliary

Supervision

Spatial rPPG

…

…
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What is rPPG?
• Remote photoplethysmography: heart beat measurement from human skin using a non-contact camera

print/replay

Live Face 3D Mask Spoof Face Print/Replay Spoof Face
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Methods using rPPG
3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. 
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Methods using rPPG
3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. 
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Overall Architecture
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• Spatial supervision: depth map

• Temporal supervision: rPPG signal

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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Overall RNN Architecture

LSTM

RNN

100

Hidden 
Neuron

s
100

rPPG
Loss

FC FF
TNon-rigid

Registration

• CNN features as input

• Use non-rigid registration layer to align the features

• LSTM + FFT to predict rPPG

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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Non-rigid Registration Layer
• Use 3D shape to compute offset 

• Use offset to deform the features

• Differentiable

Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.
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How to Obtain rPPG Label?

Extracted rPPG
Prior

Live Video Spoof Video

rPPG

• Live faces: from off-the-shelf method*

• Spoof faces: Direct assignment as zero

*Haan et. al., Robust pulse-rate from chrominance-based rPPG, IEEE Transactions on biomedical engineering
Liu et. al., Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018. 43



Oulu NPU Dataset
Protocol Method APCER BPCER ACER

P1 CPqD 2.9% 10.8% 6.9%

GRADIANT 1.3% 12.5% 6.9%

Auxiliary 1.6% 1.6% 1.6%
P2 MixedFASNet 9.7% 2.5% 6.1%

Auxiliary 2.7% 2.7% 2.7%

GRADIANT 3.1% 1.9% 2.5%
P3 MixedFASNet 5.3+6.7% 7.8+5.5% 6.5+4.6%

GRADIANT 2.6+3.9% 5.0+5.3% 3.8+2.4%

Auxiliary 2.7+1.3% 3.1+1.7% 2.9+1.5%
P4 Massy_HNU 35.8+35.3 8.3+4.1% 22.1+17.6%

GRADIANT 5.0+4.5% 15.0+7.1% 10.0+5.0%

Auxiliary 9.3+5.6% 10.4+6.0% 9.5+6.0%
44
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Oulu NPU Dataset
• Cross-test on CASIA and IDIAP (HTER)

Method Train Test Train Test

CASIA MFSD Replay Attack Replay Attack CASIA MFSD

Motion 50.2% 47.9%

LBP 55.9% 57.6%

LBP-TOP 49.7% 60.6%

Motion-Mag 50.1% 47.0%

Spectral cubes 34.4% 50.0%

CNN 48.5% 45.5%

LBP 47.0% 39.6%

Color Texture 30.3% 37.7%

Proposed method 27.6% 28.4%

45
Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018.



Methods using Depth Map
Face anti-spoofing using patch and depth-based CNNs. IJCB 2017.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. 

Face de-spoofing: anti-spoofing via noise modeling. ECCV 2018.

Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019

Aurora guard: real-time face anti-spoofing via light reflection, arXiv 2019

Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing, arXiv 2019

Multi-adversarial discriminative deep domain generalization for face presentation attack detection. CVPR 2019

Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

…
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Exploiting Temporal and Depth Information for 
Multi-frame Face Anti-spoofing
• Map single frame to depth map

• Introduce frame-to-frame motion to complete depth map

• Concat all maps to get a final score

Wang et. al., Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv 2019
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Temporal Blocks

• Short-term motion: OFF Block

• Long-term motion: multi-scale OFF feature to Conv Gated Recurrent Unit (GRU)

48
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Outline

• Vanilla CNNs
• Patch-based CNN methods
• CNN methods with auxiliary supervisions
• GAN-based noise modeling
• Data Augmentation
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Motivations

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.

• Model the spoof patterns as noise
• De-spoofing: Decompose the spoof noise for face anti-spoofing.
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A Case Study
• Careful alignment the spoof with the live
• Subtraction live from spoof 
• FFT analysis

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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The Cause of Spoof Noise Pattern?

• Color distortion

• Display artifacts 

• Presenting artifacts 

• Imaging artifacts

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Properties of the Spoof Noise Pattern

• Repetitive 

• Ubiquitous

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Overall Architecture
• De-Spoofing Net: estimate spoof noise pattern N and reconstruct live image I

• Discriminative Quality Net: guarantee reconstructed I is live

• Visual Quality Net: guarantee reconstructed I is photorealistic

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Training
De-Spoofing Net: Estimate spoof noise pattern N and reconstruct live image I

• Repetitive loss

• Ubiquitous loss: zero/one map loss

• Magnitude loss
, for live

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Training
Discriminative Quality Net: guarantee reconstructed I is live

• Depth map loss

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Training
Visual Quality Net: guarantee reconstructed I is photorealistic

• GAN loss

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Noise Classification

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Results of Live

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Results of Spoof

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Testing on Oulu
Protocol Method APCER BPCER ACER

P1

CPqD 2.9% 10.8% 6.9%

GRADIANT 1.3% 12.5% 6.9%

Auxiliary 1.6% 1.6% 1.6%

DS Net 1.2% 1.7% 1.5%

P2

MixedFASNet 9.7% 2.5% 6.1%

Auxiliary 2.7% 2.7% 2.7%

GRADIANT 3.1% 1.9% 2.5%
DS Net 4.2% 4.4% 4.3%

P3

MixedFASNet 5.3+6.7% 7.8+5.5% 6.5+4.6%

GRADIANT 2.6+3.9% 5.0+5.3% 3.8+2.4%

Auxiliary 2.7+1.3% 3.1+1.7% 2.9+1.5%
DS Net 4.0+1.8% 3.8+1.2% 3.6+1.6%

P4

Massy_HNU 35.8+35.3 8.3+4.1% 22.1+17.6%

GRADIANT 5.0+4.5% 15.0+7.1% 10.0+5.0%

Auxiliary 9.3+5.6% 10.4+6.0% 9.5+6.0%

DS Net 5.1+6.3% 6.1+5.0% 5.6+5.7%

Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face De-spoofing: Anti-spoofing via noise modeling. ECCV 2018.
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Outline

• Vanilla CNNs
• Patch-based CNN methods
• CNN methods with auxiliary supervisions
• GAN-based noise modeling
• Data Augmentation
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Data Augmentations

Face Anti-Spoofing: Model Matters, So Does Data, CVPR, 2019
Presentation Attack Detection for Face in Mobile Phones, Selfie Biometrics, 2019
Style Transfer Applied to Face Liveness Detection with User-Centered Models, arXiv, 2019
Improving Face Anti-Spoofing by 3D Virtual Synthesis, arXiv, 2019
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Face Anti-Spoofing: Model Matters, So Does Data

Synthesize
• Blurriness: random strength Gaussian blurring
• Reflection: 
• Distortion:  Perspective projection

Yang et. al., Face Anti-Spoofing: Model Matters, So Does Data, CVPR 2019
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Presentation Attack Detection for Face in 
Mobile Phones
Random perturbation:

• Contrast
• Lightness

Liu et. al., Presentation Attack Detection for Face in Mobile Phones, Selfie Biometrics, 2019
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Style Transfer
Use CNN for data augmentation

Laurensi et. al., Style Transfer Applied to Face Liveness Detection with User-Centered Models, arXiv, 2019
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3D Synthesis
Use CNN to deform the face based on 3D shape

Guo et. al., Improving Face Anti-Spoofing by 3D Virtual Synthesis, arXiv, 2019
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Summary
• We review deep learning based methods

• Binary CNN may lead to overfitting

• Advanced design is required

• Multiple input features

• Auxiliary supervision
• Noise modeling

• Data augmentation
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End of Session II

Q & A
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End of Session II

15 Minutes Break.


