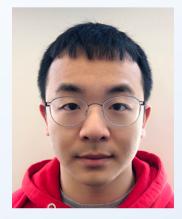


Face Anti-Spoofing: Past, Present and the Future

Host



Yaojie Liu

Dr. Xiaoming Liu

BTAS 2 19

Acknowledgement

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2017-17020200004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Acknowledgement

Thank Joel Stehouwer, Amin Jourabloo, Yousef Atoum for the help on the presentation slides and contributions on this topic.

Outline

- Session I: Introduction of face anti-spoofing and common approaches
- Break: 15 mins
- Session II: Deep learning approaches for face anti-spoofing
- Break: 15 mins
- Session III: Unknown attacks, additional sensors and practical tips

What You Can Get from This Tutorial?

- Comprehensive review of the development of face anti-spoofing
- Latest research progresses and achievements
- First-hand system building tips

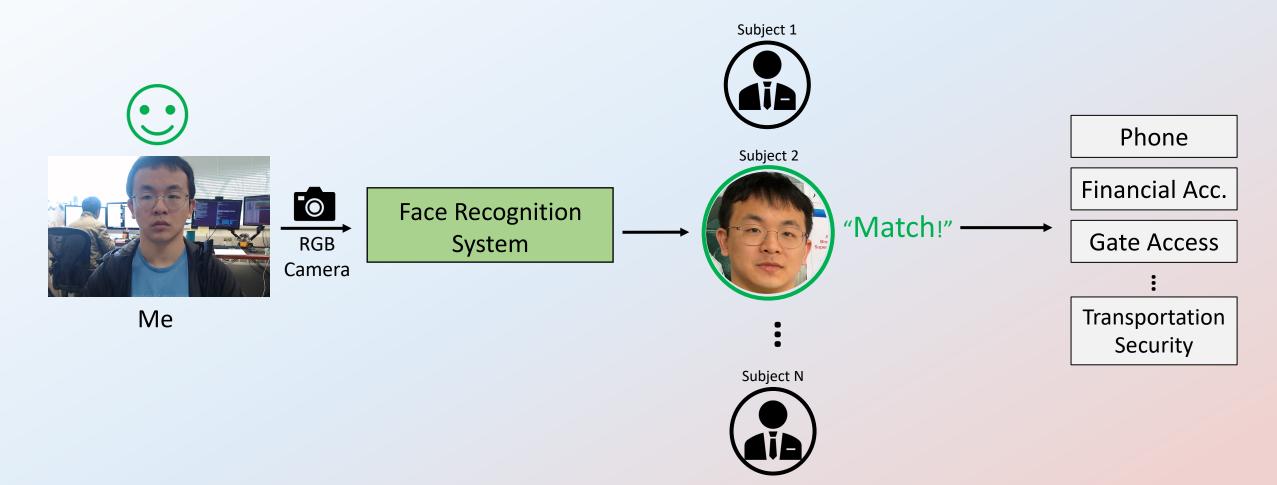
Session I: Introduction of Face Anti-spoofing and Common Approaches

Host: Yaojie Liu

Outline

- Problem Definition and Motivation
- Common Spoof Attacks and Current Databases
- Conventional Approaches
 - Interaction Based Methods
 - Texture Analysis Methods
 - Temporal Analysis Methods

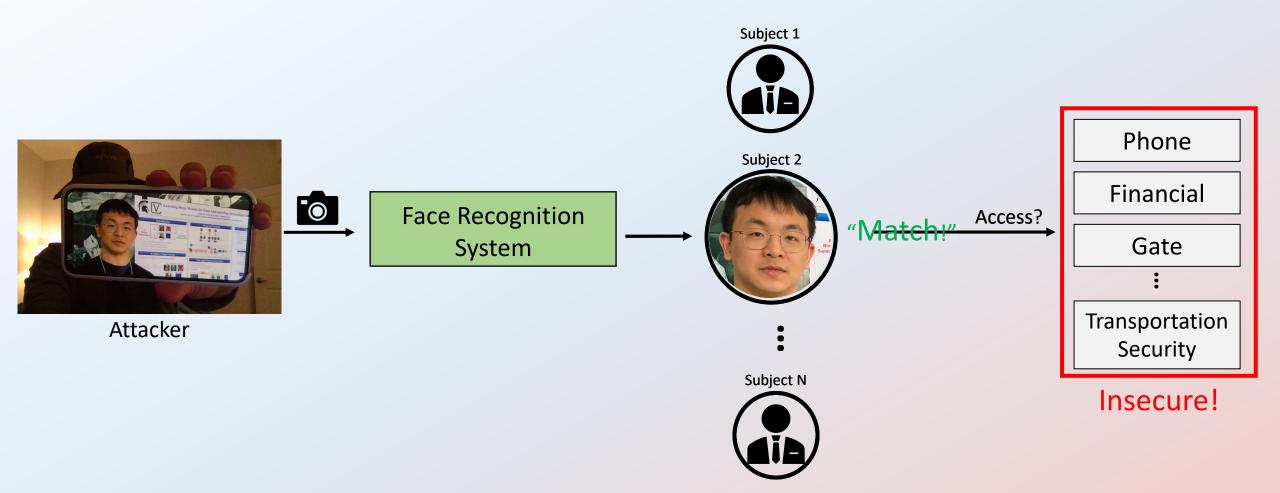
What is Face Anti-spoofing ?



BTAS

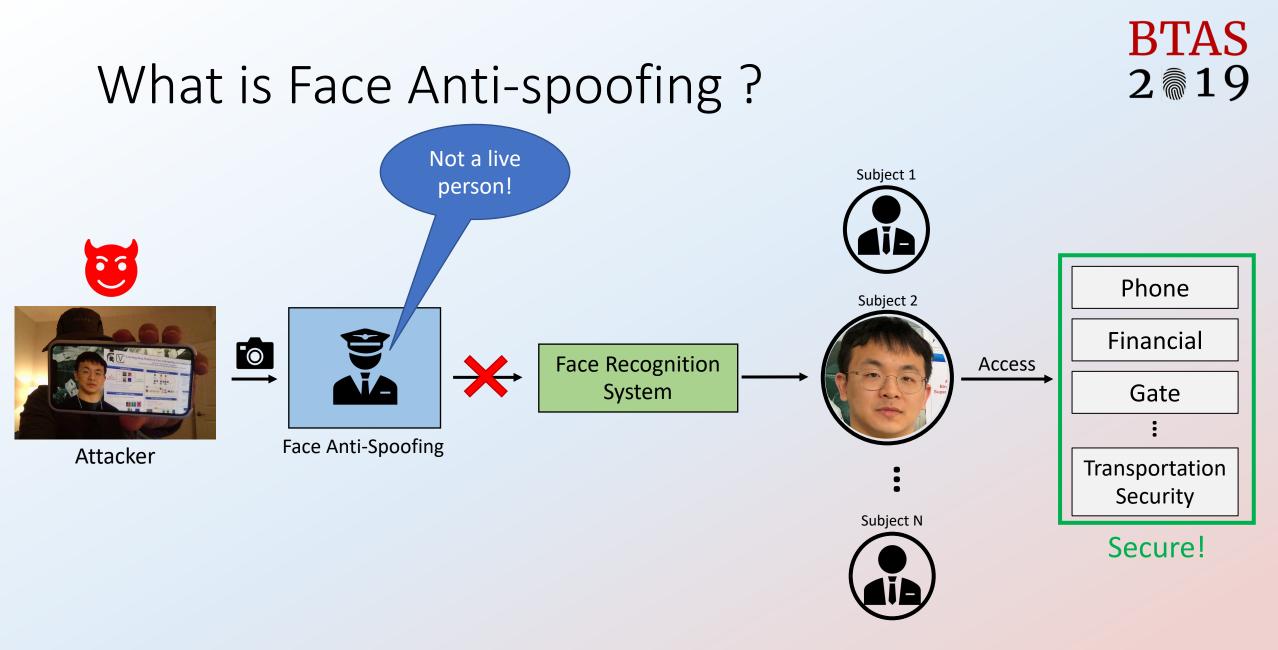
2 19

What is Face Anti-spoofing ?



BTAS

2 19



Illumination¹ Unknown Attacks⁴ Poses² Cross-sensor³ Face Anti-Spoofing Subtle Spoof Cues

[1] Z. Boulkenafet et. al. Face antispoofing using speeded-up robust features and fisher vector encoding. Signal Processing Letters, 2016

[2] Y. Liu et. al. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. CVPR 2018

[3] Z. Boulkenafet et. al. OULU-NPU: A mobile face presentation attack database with real-world variations. FG 2017

[4] Y. Liu et. al. Deep tree learning for zero-shot face anti-spoofing. CVPR 2019

Challenges

Common Spoof Attacks

- Impersonation: the use of spoof to be recognized as someone else
- Obfuscation: the use of spoof to remove the attacker's own identity

Common Spoof Attacks

- Print
- Replay
- 3D Mask
- Makeup
- Partial Attack

Current Databases

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
Replay-Attack	RGB	Х			3	50	1200	2012
CASIA-FASD	RGB	Х			3	50	600	2012
3DMAD	RGB, Depth		Х		1	17	510	2014
MSU-MFSD	RGB	Х			3	55	280	2015
MSU-USSA	RGB	Х			8	1000	9,000 images	2016
HKBU MAR	RGB		х		2	35	1008	2016
MiW	RGB			Х	3	434	1604	2017
OULU-NPU	RGB	Х			4	55	4950	2017
SiW	RGB	Х			6	165	4478	2018
SiW-M	RGB	Х	Х	Х	13	493	1630	2019
CASIA-SURF	RGB, NIR, Depth	Х				1000	21000	2019
WMCA	RGB, NIR, Depth, Thermal	Х	Х		7	72	1679	2019

Replay Attack Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
Replay-Attack	RGB	Х			3	50	1200	2012

- Photo/video attacks
- Controlled/adverse sessions

BTAS 2 \overline 19

CASIA-FASD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CASIA-FASD	RGB	Х			3	50	600	2012

- Three different image quality
- Eye cut to counter the eye-blinking methods
- Warp paper to counter the motion methods

MSU-MFSD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
MSU-MFSD	RGB	Х			3	55	280	2015

- Two capture devices
 - Build-camera in MacBook Air 13 (640*480)
 - Front camera in Google Nexus 5 Android phone (720x480)
- Mostly used with CASIA and Replay

MSU-USSA Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
MSU-MFSD	RGB	Х			3	55	280	2015

- Live images from Internet
- Higher resolution compared with MFSD
 - Front-facing camera in the Google Nexus 5 Android phone (1280 × 960).
 - Rear-facing camera in the Google Nexus 5 Android phone (3264 × 2448)
- Spoof from 8 devices



OULU-NPU Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
OULU-NPU	RGB	Х			4	55	4950	2017

- 6 camera, 1080P resolution
- Comprehensive evaluation protocols

SiW Database

Sensors

RGB

•	Pose,	illumination,	expression
---	-------	---------------	------------

• More subjects

Database

SiW

• Comprehensive evaluation protocols

Print/Replay

Х

Subjects

165

Videos

4478

Spoof Type

6

Makeup

Mask

Year

2018

CASIA-SURF Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CASIA-SURF	RGB, NIR, Depth	Х				1000	21000	2019
• Mu	ulti modalities			Real, RGB				
• Mc	ore subjects/vio	deos		Real, Dept	h 🔔 🧶			
				Real, IR	2. 2.	2. 2.	. 9. 1	2
				Fake, RGB				
				Fake, Dept		AL		8
				Fake, IR	A A	A A		

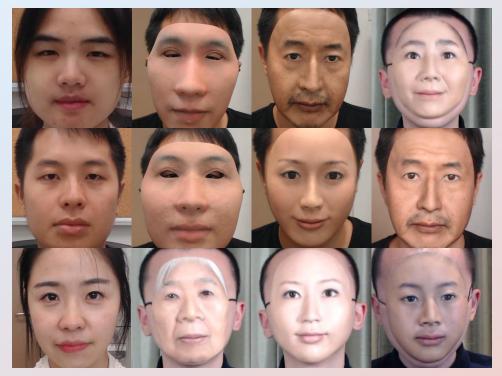
3DMAD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
3DMAD	RGB, Depth		Х		1	17	510	2014

- Multi modalities
- More subjects/videos

HKBU MAR Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
HKBU MAR	RGB		Х		2	35	1008	2016

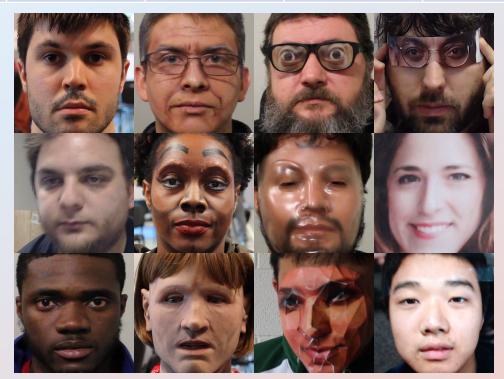


Liu et. al., rPPG Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018 Liu et. al., 3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016 Liu et. al., A 3D Mask Face Anti-spoofing Database with RealWorld Variations, CVPRW 2016

SiW-M Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
SiW-M	RGB	Х	Х	Х	13	493	1630	2019

- More spoof types
- Leave-one-out testing protocols
- Include hard live and spoof samples



WMCA Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
WMCA	RGB, NIR, Depth	Х	Х		7	72	1679	2019

Conventional Approaches

- Interaction Based Methods
- Texture Analysis Methods
- Temporal Analysis Methods

Conventional Approaches

BTAS 2 19

- Interaction Based Methods
- Texture Analysis Methods
- Temporal Analysis Methods

Interaction Based Methods

- An interaction based method relies on discriminating between live and spoof via specified motion/behavioral cues that are native to live samples or require specific, voluntary user interaction.
- Representative Works
 - Eyeblink-Based Anti-Spoofing^{1,2}
 - Lip Motion Analysis³
 - Audio verification^{4,5}

^[1] G. Pan et. al., Eyeblink-Based Anti-Spoofing in Face Recognition from a Generic Web-Camera. ICCV, 2007

^[2] L. Sun et. al., Blinking-based live face detection using conditional random fields. Advances in Biometrics, 2007.

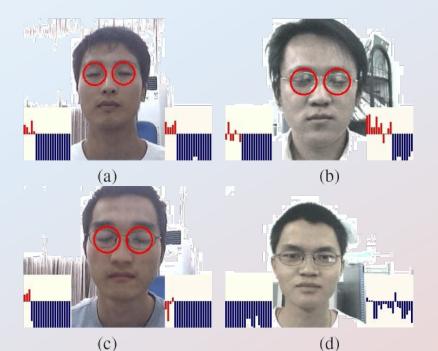
^[3] K. Kollreider et. al., Realtime face detection and motion analysis with application in "liveness" assessment. TIFS, 2007.

^[4] G. Chetty. Biometric liveness checking using multimodal fuzzy fusion. In Fuzzy Systems (FUZZ), 2010

^[5] G. Chetty and M. Wagner. Audio-visual multimodal fusion for biometric person authentication and liveness verification, 2006.

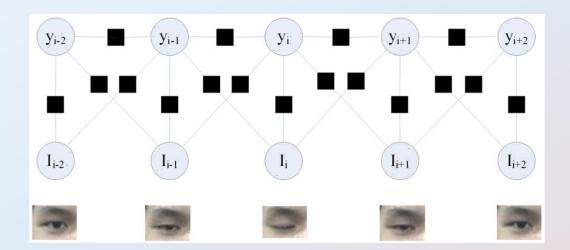
Eyeblink-Based Face Anti-Spoofing

- Proposal: The detection of eyeblinks is beneficial for discriminating between live samples and static photo attacks.
 - Live samples will exhibit eyeblinks
 - Photo attacks will be static and not exhibit eyeblinks



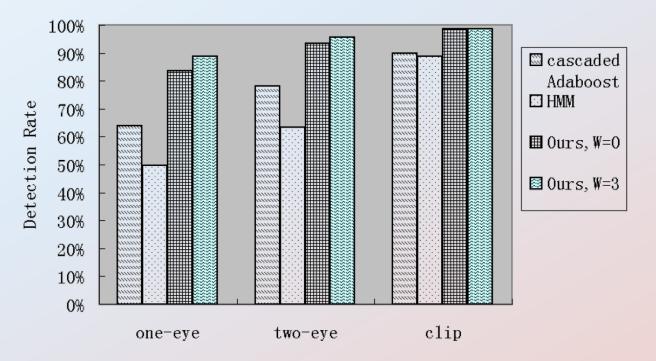
Eyeblink-Based Face Anti-Spoofing

• Method: Conditional Random Field on eye portion



Eyeblink-Based Face Anti-Spoofing

- One-eye: eye-blinking detection rate of the single eye
- Two-eye: eye-blinking detection rate of the two eyes
- Clip: The true detection rate of liveness

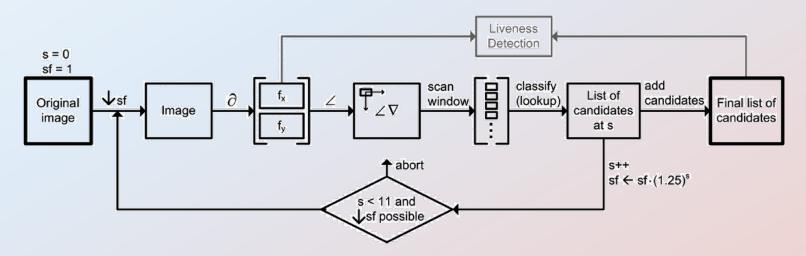


Eyeblink-Based Face Anti-Spoofing

- Shortcomings
 - What happens if a live sample does not blink during the timeframe?
 - How to detect replay attacks?
 - How to detect cut-out eye photo attacks?

Lip Motion Analysis

- The extraction of motion patterns when a user is moving his/her mouth is beneficial for discriminating between live samples and bent or rigid photo attacks.
 - A live sample will exhibit natural and non-uniform facial movement
 - A photo attack will exhibit non-natural (bent) or uniform (rigid) facial movement



Motion Examples



Bent Photo Attack

Live Access

Results

Yale Face Dataset

Method	Detection Rate	False Positives
Nguyen	86.6%	0
Proposed	100.0%	0

CMU-MIT Frontal Face Dataset

Method	Detection Rate	False Positive Rate
Rowley	89.2%	1.27*10 ⁻⁶
Viola & Jones	92.9%	1.27*10 ⁻⁶
Proposed	94.2%	1.27*10 ⁻⁶
Proposed	93.0%	1.00*10-6

BTAS 2 19

Lip Motion Analysis

• Shortcomings

- How well does this method perform on bent photo attacks?
- How to detect altered facial motion in replay attacks?
- How to detect a flexible mask attack?
- Does the camera have to be stationary?

Interaction Based Methods

• Pros

- Simple implementations that model live samples
- Effective solutions for their respective attack types
- Handcrafted features are designed for efficient discriminability

• Cons

- Require interactions from the user
- Unable to evaluate individual images
- Unable to generalize to new attack types

Texture Analysis Methods

- A texture analysis method relies on detecting additional high frequency information from print/replay attacks that does not exist in live samples.
- Pipeline
 - Handcrafted feature + Conventional Classifiers (SVM, LDA, and etc)

Z. Boulkenafet, J. Komulainen, and A. Hadid. Face Anti-Spoofing Based on Color Texture Analysis. In ICIP, 2015

Z. Boulkenafet, J. Komulainen, and A. Hadid. Face Anti-Spoofing Using Speeded Up Robust Features and Fisher Vector Encoding. IEEE Signal Processing Letters, 2017.

J. Maatta, A. Hadid, and M. Pietikainen. Face Spoofing Detection from Single Images using Micro-Texture Analysis. In IEEE IJCB, 2011.

Texture Based Methods

• Features

- Difference of Gaussian (DoG)
- LBP
- LBP-TOP
- Color LBP
- IQA/IQM
- SIFT/SURF

Face Anti-Spoofing Based on Color Texture Analysis. In ICIP, 2015

Face Anti-Spoofing Using Speeded Up Robust Features and Fisher Vector Encoding. IEEE Signal Processing Letters, 2017.

Face Spoofing Detection from Single Images using Micro-Texture Analysis. In IEEE IJCB, 2011.

Difference of Gaussian (DoG)

• The subtraction of one blurred version of an original image from another, less blurred version of the original

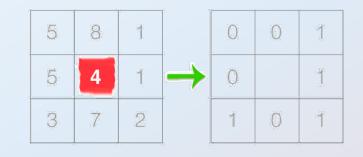
$$\Gamma_{\sigma_1,\sigma_2}(x) = I * rac{1}{\sigma_1 \sqrt{2\pi}} \, e^{-(x^2)/(2\sigma_1^2)} - I * rac{1}{\sigma_2 \sqrt{2\pi}} \, e^{-(x^2)/(2\sigma_2^2)}.$$

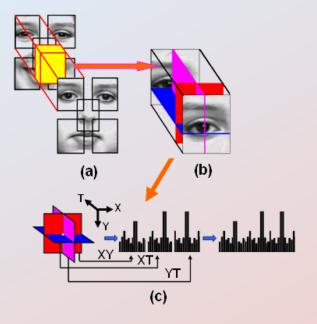
• Extraction of high-frequency details

BTAS

Local Binary Patterns (LBP)

- Divide image into cells (e.g. 16x16 pixels)
- For each cell, compare the pixel to its 8 neighbors.
- center pixel > the neighbor \rightarrow "0" center pixel <= the neighbor \rightarrow "1".
- Compute the histogram of the frequency of 0/1
- Normalize and vectorize the histogram.



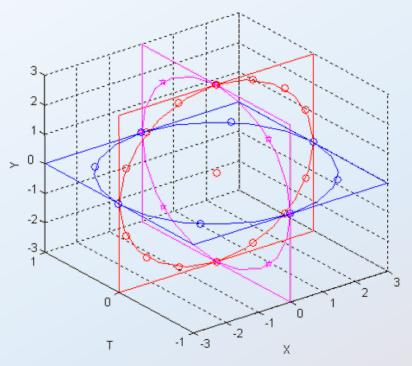


BTAS

LBP-TOP

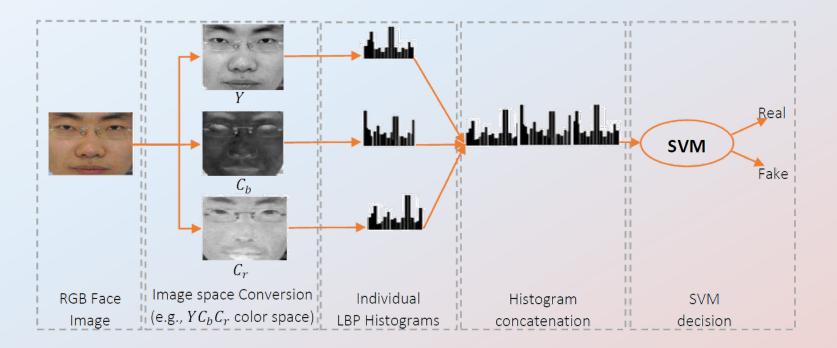
BTAS 2 19

- local binary patterns from three orthogonal planes
 - X-Y, X-T, Y-T



Color LBP

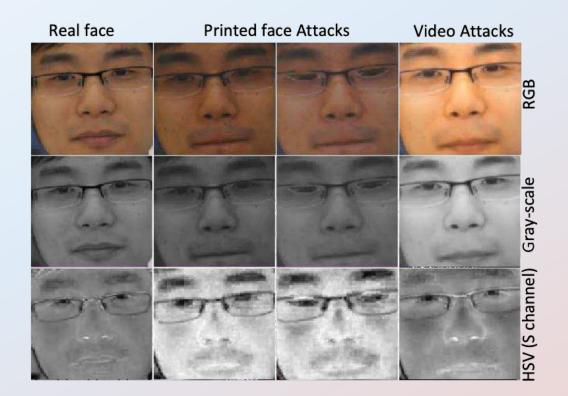
- Extract the LBP feature for each color channel
- Consider different color spaces



Different Color Spaces

BTAS 2 19

- RGB are highly correlated
- Isolating luminance from chrominance can lead to better LBP features



Different Color Spaces

- RGB are highly correlated
- Isolating luminance from chrominance can lead to better LBP features
- Ablation study on Replay database:

Method	EER	HTER
Gray-scale-LBP	15.3	15.6
RGB-LBP	5.0	6.6
HSV-LBP	6.4	7.0
YCbCr-LBP	0.7	3.3
YCbCr+HSV-LBP	0.4	2.9

BTAS

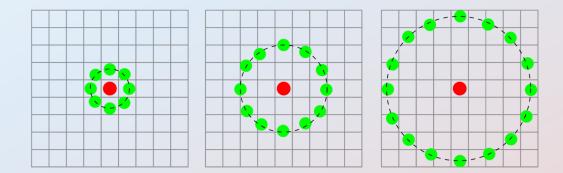
Testing Results on Replay-Attack and CASIA-FASD

Method	Replay	CASIA-FASD	
Method	EER %	HTER %	EER %
IQA based	-	-	32.4
CCD	-	-	11.8
DOG	-	-	17.0
Motion+LBP	4.5	5.1	-
Motion	11.6	11.7	26.6
LBP	13.9	13.8	18.2
LBP-TOP	7.8	7.6	10.6
Color LBP	0.4	2.9	6.2

BTAS 2 19

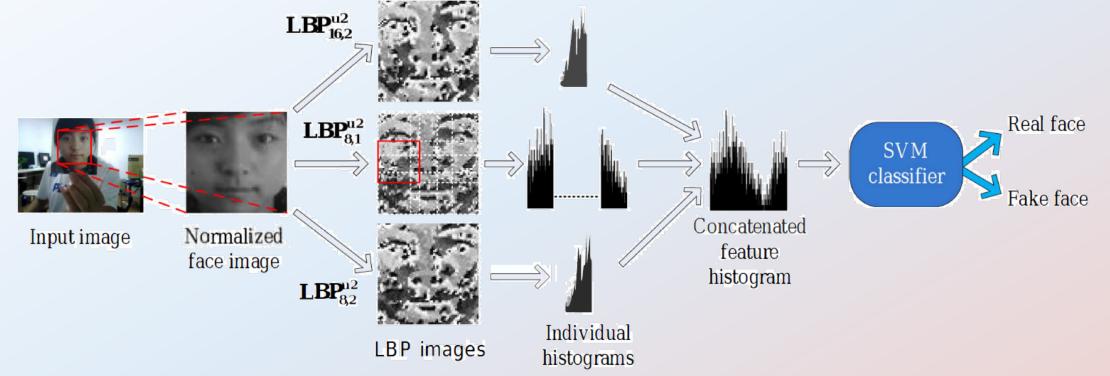
Micro-Texture Analysis

- BTAS 2 19
- Proposal: The multi-scale LBP feature is beneficial for discriminating between the luminance channel of live samples and photo attacks.
 - A live face will exhibit natural texture and reflectance
 - A photo attack will exhibit color gamut warping, artifacts, and unnatural reflectance
- Multi-scale LBP can detect anomalies in small patches or in larger patches.



J. Maatta, A. Hadid, and M. Pietikainen. Face Spoofing Detection from Single Images using Micro-Texture Analysis. In IEEE IJCB, 2011.

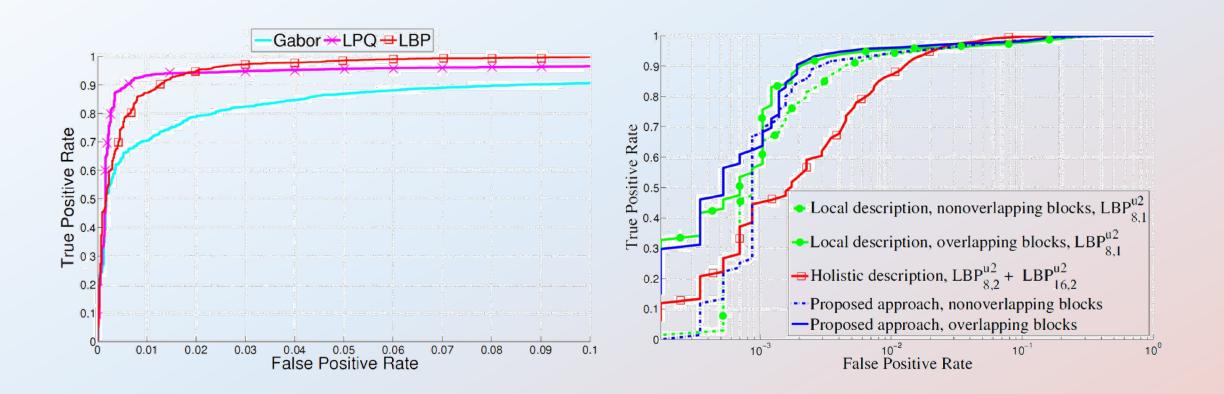
Micro-Texture Analysis



BTAS

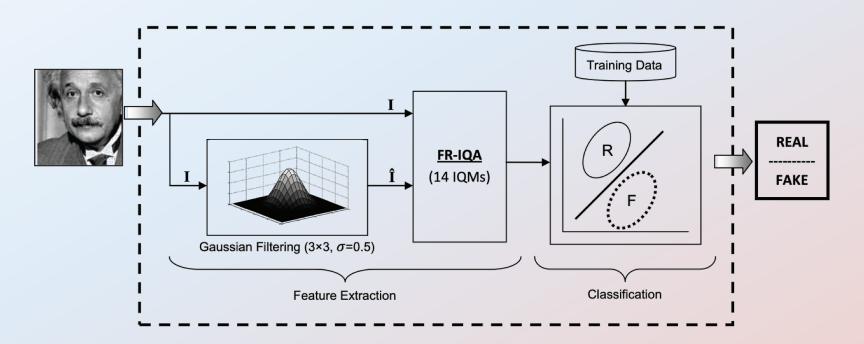
BTAS 2 19

Micro-Texture Analysis



IQA/IQM

 Image quality assessment/ Image quality measurement: assume the loss of quality produced by Gaussian filtering differs between real and fake biometric samples.



BTAS 2 19

IQA/IQM

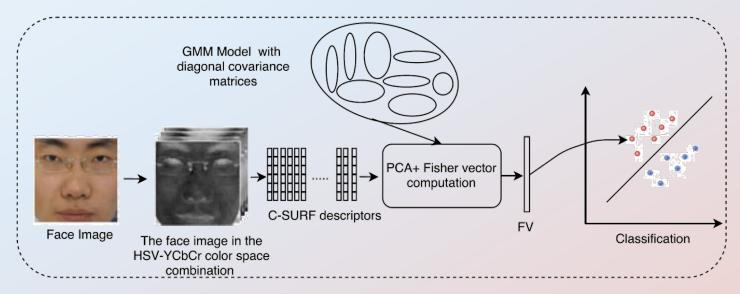
• Image quality assessment/ Image quality measurement

#	Acronym	Name	Ref.	Description
1	MSE	Mean Squared Error	[17]	$MSE(\mathbf{I}, \mathbf{\hat{I}}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j} - \mathbf{\hat{I}}_{i,j})^2$
2	PSNR	Peak Signal to Noise Ratio	[18]	$PSNR(\mathbf{I}, \mathbf{\hat{I}}) = 10 \log(\frac{\max(\mathbf{I}^2)}{MSE(\mathbf{I}, \mathbf{\hat{I}})})$
3	SNR	Signal to Noise Ratio	[19]	$SNR(\mathbf{I}, \mathbf{\hat{I}}) = 10 \log(\frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j})^2}{N \cdot M \cdot MSE(\mathbf{I}, \mathbf{\hat{I}})})$
4	SC	Structural Content	[20]	$SC(\mathbf{I}, \mathbf{\hat{I}}) = rac{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j})^2}{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{\hat{I}}_{i,j})^2}$
5	MD	Maximum Difference	[20]	$MD(\mathbf{I}, \hat{\mathbf{I}}) = \max \mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j} $
6	AD	Average Difference	[20]	$AD(\mathbf{I}, \hat{\mathbf{I}}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j})$
7	NAE	Normalized Absolute Error	[20]	$AD(\mathbf{I}, \hat{\mathbf{I}}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j})$ $NAE(\mathbf{I}, \hat{\mathbf{I}}) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j} }{\sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{I}_{i,j} }$
8	RAMD	R-Averaged MD	[17]	$RAMD(\mathbf{I}, \hat{\mathbf{I}}, R) = \frac{1}{R} \sum_{r=1}^{R} \max_{r} \mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j} $
9	LMSE	Laplacian MSE	[20]	$\frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{I}_{i,j} }{RAMD(\mathbf{I}, \hat{\mathbf{I}}, R) = \frac{1}{R} \sum_{r=1}^{R} \max_{r} \mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j} }{LMSE(\mathbf{I}, \hat{\mathbf{I}}) = \frac{\sum_{i=1}^{N-1} \sum_{j=2}^{M-1} (h(\mathbf{I}_{i,j}) - h(\hat{\mathbf{I}}_{i,j}))^2}{\sum_{i=1}^{N-1} \sum_{j=2}^{M-1} h(\mathbf{I}_{i,j})^2}}{NXC(\mathbf{I}, \hat{\mathbf{I}}) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j}, \hat{\mathbf{I}}_{i,j})}{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j})^2}}$
10	NXC	Normalized Cross-Correlation	[20]	$NXC(\mathbf{I}, \mathbf{\hat{I}}) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j} \cdot \mathbf{\hat{I}}_{i,j})}{\sum_{i=1}^{N} \sum_{j=1}^{M} (\mathbf{I}_{i,j})^2}$
11	MAS	Mean Angle Similarity	[17]	$MAS(\mathbf{I}, \hat{\mathbf{I}}) = 1 - \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (\frac{2}{\pi} \cos^{-1} \frac{\langle \mathbf{I}_{i,j}, \mathbf{I}_{i,j} \rangle}{ \mathbf{I}_{i,j} \hat{\mathbf{I}}_{i,j} })$
12	MAMS	Mean Angle Magnitude Similarity	[17]	$MAMS(\mathbf{I}, \hat{\mathbf{I}}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (1 - [1 - \alpha_{i,j}] [1 - \frac{ \mathbf{I}_{i,j} - \hat{\mathbf{I}}_{i,j} }{255}])$ $TED(\mathbf{I}_{\mathbf{E}}, \hat{\mathbf{I}}_{\mathbf{E}}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{I}_{\mathbf{E}i,j} - \hat{\mathbf{I}}_{\mathbf{E}i,j} $
13	TED	Total Edge Difference	[21]	$TED(\mathbf{I_E}, \mathbf{\hat{I}_E}) = rac{1}{NM} \sum_{i=1}^N \sum_{j=1}^M \mathbf{I_E}_{i,j} - \mathbf{\hat{I}_E}_{i,j} $
14	TCD	Total Corner Difference	[21]	$TCD(N_{cr}, \hat{N}_{cr}) = \frac{ N_{cr} - \hat{N}_{cr} }{\max(N_{cr}, \hat{N}_{cr})}$

Javier Galbally and Sebastien Marcel. Face Anti-Spoofing Based on General Image Quality Assessment. ICPR, 2014.

SIFT/SURF

- Proposal: Fisher vectors acting on Speeded Up Robust Features are an efficient method of extracting dense features to discriminate between live and spoof samples.
 - SURF will detect and utilize regions of interest to focus attention on discriminative local patches.



SURF and Fisher Vectors

		Method	Replay Attack		CASIA-FASD	
	Replay-Attack	CASIA-FASD	Wethou	EER %	HTER %	EER %
Method	Test	Test	CCD	-	-	11.8
LBP	45.9	57.6	DOG	-	-	17.0
LBP-TOP	49.7	60.6	Motion+LBP	4.5	5.1	-
Motion Mag	50.1	47.0	LBP	13.9	13.8	18.2
Color Texture ₁	37.9	25.4	LBP-TOP	7.8	7.6	10.6
Color Texture ₁	30.3	37.7	Motion Mag	0.2	0.0	14.4
SURF	26.9	23.2	Color Texture ₁	0.4	2.9	6.2
SURF	20.5	23.2	Color Texture ₂	0.0	3.5	3.2
			SURF	0.1	2.2	2.8

Temporal Analysis Methods

- A temporal analysis method analyses the involuntary or natural movement or other phenomena of the face to discriminate between live and spoof samples.
- Representative Works
 - Optical Flow Fields (OFF)
 - Remote Photoplethysmography (rPPG)

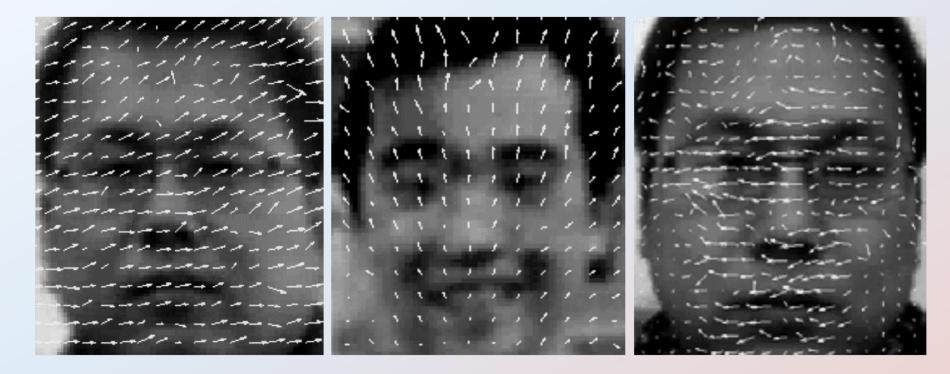
Temporal Analysis Methods

- A temporal analysis method analyses the involuntary or natural movement or other phenomena of the face to discriminate between live and spoof samples.
- Representative Works
 - Optical Flow Fields (OFF)
 - Remote Photoplethysmography (rPPG)

W. Bao, H. Li, N. Li, and W. Jiang. A Liveness Detection Method for Face Recognition based on Optical Flow Field. In IEEE IASP, 2009
S. Liu, P. C. Yuen, S. Zhang, and G. Zhao. 3D Mask Face Anti-Spoofing with Remote Photoplethysmography. In ECCV 2016.
J. Hernandez-Ortega, J Fierrez, A. Morales, and P. Tome. Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR. In CVPR 2018.

Optical Field Flow

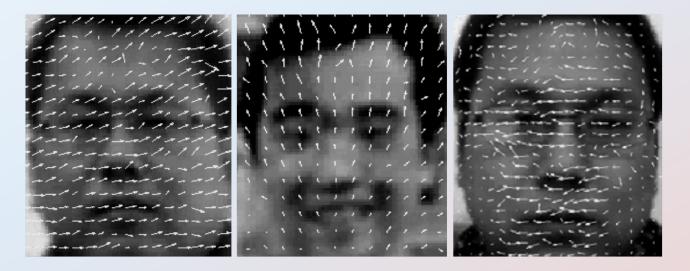
• A temporal analysis method analyses the **involuntary** or **natural** movement or other phenomena of the face to discriminate between live and spoof samples.



BTAS 2 19

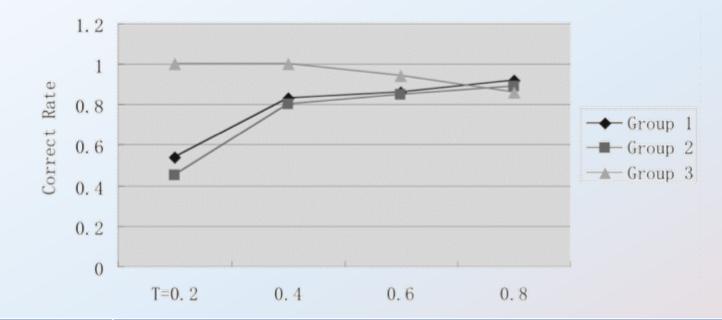
Optical Field Flow

- Proposal: Optical flow fields are beneficial for discriminating between 3D live samples and 2D photo attacks.
 - The optical flow for real faces is non-uniform
 - The optical flow for rigid photo attacks is uniform
 - The optical flow for bent photos is non-uniform, but structured



BTAS 2 ⊚ 19

Optical Field Flow



Group	Time Frame Length						
	0.2	0.4	0.6	0.8			
1	0.54	0.83	0.86	0.92			
2	0.45	0.80	0.85	0.89			
3	1.00	1.00	0.94	0.86			

BTAS 2 19

Optical Field Flow

- Shortcomings
 - What is the minimum length of time required for strong classification?
 - How does the system behave if only part of the face is covered?

BTAS 2 19

Color Texture Analysis

				Mathad	Replay Attack		CASIA-FASD	
Method	Replay Attack C		CASIA	-FASD	Method	EER %	HTER %	EER %
	Dev	Test	Train	Test	IQA based	-	-	32.4
Motion	50.2	50.2	47.7	48.2	CCD	-	-	11.8
LBP	44.9	47.0	57.3	57.9	DOG	-	-	17.0
LBP-TOP	48.9	50.6	60.0	61.3	Motion+LBP	4.5	5.1	-
Motion Mag	50.0	50.2	43.8	50.3	Motion	11.6	11.7	26.6
Color LBP	22.5	20.6	47.5	43.9	LBP	13.9	13.8	18.2
-SVM-RBF	22.5	20.0	17.5	10.0	LBP-TOP	7.8	7.6	10.6
Color LBP -SVM-Linear	17.7	16.7	38.6	37.6	Motion Mag	0.2	0.0	14.4
					Color LBP	0.4	2.9	6.2

Z. Boulkenafet, J. Komulainen, and A. Hadid. Face Anti-Spoofing Based on Color Texture Analysis. In ICIP, 2015

Temporal Analysis Methods

- A temporal analysis method analyses the **involuntary** or **natural** movement or other phenomena of the face to discriminate between live and spoof samples.
- Representative Works
 - Optical Flow Fields (OFF)
 - Remote Photoplethysmography (rPPG)

BTAS 2 19

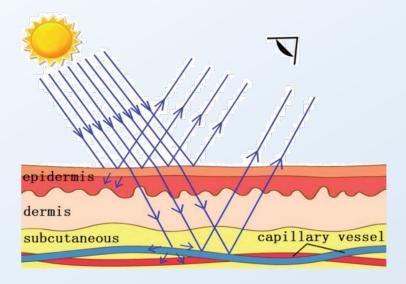
Remote Photoplethysmography (rPPG)

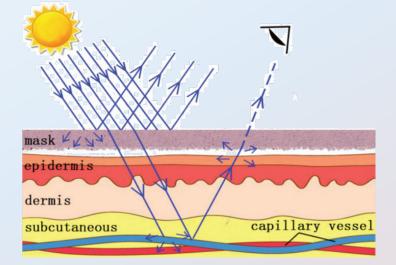
- Proposal: rPPG can be used to discriminate between live samples and 3D masks because a 3D mask will hide the rPPG signal from the live skin underneath.
 - The rPPG can be reliably predicted for a live sample
 - The rPPG cannot be predicted for a 3D mask sample

What is rPPG?

BTAS 2 19

 Remote photoplethysmography: heart beat measurement from human skin using a non-contact camera





Live Face

3D Mask Spoof Face

Print/Replay Spoof Face

What is rPPG?

 Remote photoplethysmography: heart beat measurement from human skin using a non-contact camera

What is rPPG?

 Remote photoplethysmography: heart beat measurement from human skin using a non-contact camera

$$S = c_1 R_n + c_2 G_n + c_3 B_n$$

$$C_{ni} = \frac{C_i}{\mu(C_i)}$$

• Use signal-to-noise ratio (SNR) analysis

Methods using rPPG

3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018 Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR. CVPR 2018.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018.

Methods using rPPG

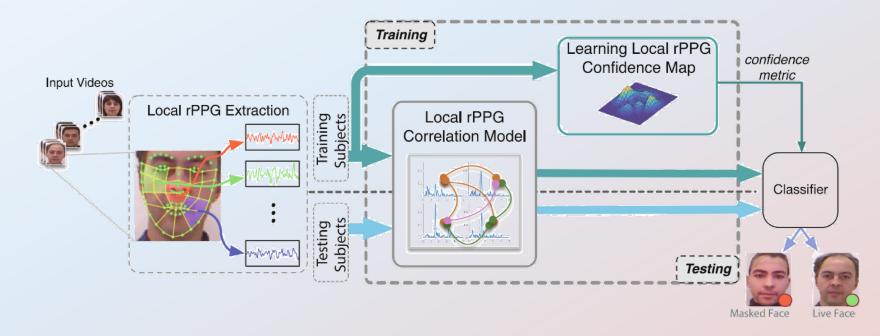
3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016

Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018 Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR. CVPR 2018.

Learning deep models for face anti-spoofing: binary or auxiliary supervision. CVPR 2018. (Talk in session 2)

3D Mask Face Anti-spoofing with Remote Photoplethysmography

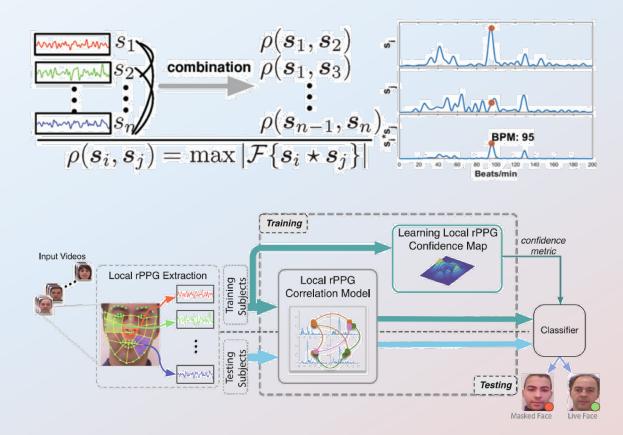
- Handle 3D mask attack
- On live face, light go through skin and rPPG can be detected by camera
- On 3D mask, most lights are blocked by the mask, rPPG can be very weak



BTAS

3D Mask Face Anti-spoofing with Remote Photoplethysmography

Local rPPG correlation model

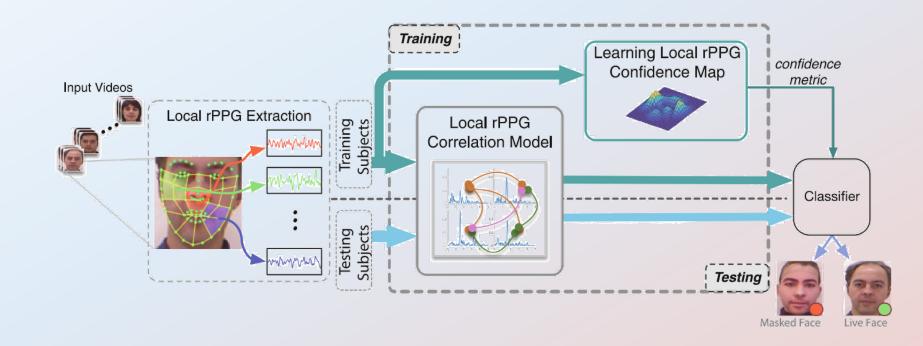


S. Liu, P. C. Yuen, S. Zhang, and G. Zhao. 3D Mask Face Anti-Spoofing with Remote Photoplethysmography. In ECCV 2016.

BTAS

3D Mask Face Anti-spoofing with Remote Photoplethysmography

- local rPPG confidence map
 - reflects the reliability of local face regions



BTAS

Remote Photoplethysmography (rPPG)

	C	ombined Datase	t	Supplementary Dataset		
Method	/lethod HTER % El		AUC %	HTER %	EER %	AUC %
Micro-Texture	13.8 ± 19.4	13.6	92.8	23.0 ± 21.2	22.6	86.8
Proposed	9.7 ± 12.6	9.9	95.5	14.7 ± 10.9	16.2	91.7

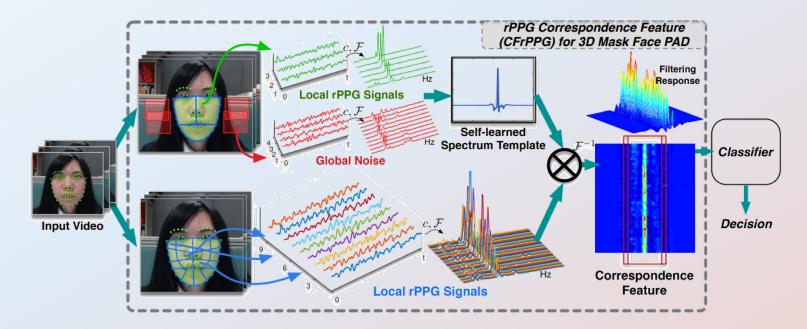
		3DMAD -> Sup		Sup -> 3DMAD		
Method	HTER %	ITER % EER % AUC %		HTER %	EER %	AUC %
Micro-Texture	46.5 ± 5.1	49.2	51.0	64.2 ± 16.7	51.6	47.3
Proposed	11.9 ± 2.7	12.3	94.9	17.4 ± 2.4	17.7	91.2

Inter and Intra-Dataset testing using the 3DMAD and Supplimentary datasets. The 3DMAD includes only hard masks, the supplementary includes hard masks and silicone masks.

S. Liu, P. C. Yuen, S. Zhang, and G. Zhao. 3D Mask Face Anti-Spoofing with Remote Photoplethysmography. In ECCV 2016.

Remote Photoplethysmography Correspondence BTAS Feature for 3D Mask Face Presentation Attack Detection

- Leverage the background noise
- On live face, light go through skin and rPPG can be detected by camera
- On 3D mask, most lights are blocked by the mask, rPPG can be very weak



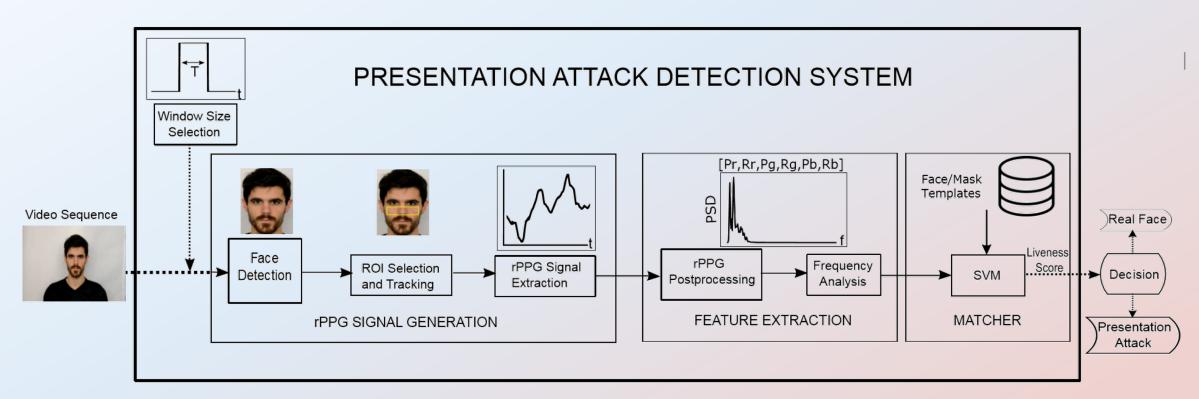
Remote Photoplethysmography Correspondence BTAS 2@19 Feature for 3D Mask Face Presentation Attack Detection

Perform well on cross-database testing

	$3DMAD \rightarrow HKBUMARsV2$				HKBUMARsV2→3DMAD					
					FFR@					FFR@
	HTER(%)	EER(%)	AUC(%)	FLR=0.1	FLR=0.01	HTER(%)	EER(%)	AUC(%)	FLR=0.1	FLR=0.01
MS-LBP [18]	53.0 ± 3.6	39.8	60.4	97.8	100.0	32.8 ± 11.5	32.5	75.3	58.5	87.8
CTA [41]	40.1 ± 7.8	40.2	62.1	87.1	98.3	47.7 ± 5.4	42.5	60.5	81.2	96.5
CNN	50.0 ± 0.0	47.8	54.6	82.6	97.9	50.0 ± 0.0	44.3	58.6	87.3	99.3
GrPPG [20]	24.3 ± 7.1	18.5	86.7	37.8	78.5	15.7 ± 6.8	15.4	87.2	20.6	94.5
LrPPG [19]	16.8 ± 5.0	10.9	95.6	12.4	61.7	17.4 ± 4.4	14.0	92.3	17.4	48.7
CFrPPG	$\textbf{2.51} \pm \textbf{0.1}$	5.08	99.0	2.19	19.6	$\textbf{2.55}\pm\textbf{0.1}$	5.88	98.0	4.66	12.4

rPPG Using Near Infra-Red (NIR) Data

• Proposal: NIR data more natively supports the prediction of rPPG, and is therefore more useful for rPPG-based anti-spoofing.



rPPG Using Near Infra-Red (NIR) Data

Data	Video Length (s)	1	2	5	10	20	30	40	50	60
RGB	Mean EER (%)	46.9	45.7	42.1	40.1	40.0	40.0	36.6	30.0	25.0
	Std EER (%)	3.9	5.1	9.5	9.6	14.0	21.1	20.5	25.8	26.3
NIR	Mean EER (%)	42.4	41.7	38.4	30.9	30.0	16.6	5.0	0.0	0.0
	Std EER (%)	5.9	6.4	10.8	13.5	18.8	17.5	15.8	0.0	0.0

Subject based leave one out evaluation using RGB (3D-MAD, 17 subjects) data or NIR (selfcollected, 10 subjects) data.

Remote Photoplethysmography (rPPG)

• Shortcomings

- How to construct rPPG groundtruth data?
- How does the solution behave if the face is only half-covered?
- How to improve performance on short videos?
- How will rPPG behave for non-mask spoof types?

Temporal Analysis Methods

• Pros

• Models natural phenomena that are native to live samples

• Cons

- Unable to evaluate individual images
- Are these practical in real-time, commercial, scenarios?

Summary

Factor	Interaction	Texture	Temporal
Evaluation on Individual Images		Х	
Does not Require User Cooperation		Х	Х
Practical for Commercial Product	Х	Х	
Generalizable to Unknown Spoof Types	?	?	?

Summary

- Problem Definition and Motivation
- Common Spoof Attacks and Current Databases
- Conventional Approaches (before 2017)
 - Interaction Based Methods
 - Texture Analysis Methods
 - Temporal Analysis Methods

Summary

- Interaction Based Methods
 - Pro: Intuitive
 - Con: Easy to break
- Texture Analysis Methods
 - Pro: More robust than interaction based methods
 - Con: handcrafted features have limited performance
- Temporal Analysis Methods
 - Pro: Another degree of information
 - Con: Real-time?

Recent progress

- Deep Learning Based Methods
 - More data
 - More general
- Unknown Situations/Attacks

End of Session I

Q&A

End of Session I

15 Minutes Break.

