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Automatic Feeding Control for Dense
Aquaculture Fish Tanks

Yousef Atoum, Steven Srivastava, and Xiaoming Liu, Member, IEEE

Abstract—This paper introduces an efficient visual signal pro-
cessing system to continuously control the feeding process of fish
in aquaculture tanks. The aim is to improve the production profit
in fish farms by controlling the amount of feed at an optimal rate.
The automatic feeding control includes two components: 1) a con-
tinuous decision on whether the fish are actively consuming feed,
and 2) automatic detection of the number of excess feed popu-
lated on the water surface of the tank using a two-stage approach.
The amount of feed is initially detected using the correlation filer
applied to an optimum local region within the video frame, and
then followed by a SVM-based refinement classifier to suppress the
falsely detected feed. Having both measures allows us to accurately
control the feeding process in an automated manner. Experimental
results show that our system can accurately and efficiently estimate
both measures.

Index Terms—Bag-of-Words (BoW), correlation filter (CF),
feeding control, fish, HOG, particle filter.

[. INTRODUCTION

ASED on the statistics from Fisheries and Aquaculture

Department [1], aquaculture is growing at a very high rate
internationally, and its contribution to the world’s total fish pro-
duction reached 42.2% in 2012, up from 25.7% in 2000. The
fish feeding process is one of the most important aspects in man-
aging aquaculture tanks, where the cost of fish feeding is around
40% of the total production costs [6].

Monitoring several aquaculture tanks with highly populated
fish is a challenging task. Many researchers adopt a telemetry-
based approach to study fish behavior [5], [7]. In addition, some
scientists prefer a computer vision (CV)-based approach for fish
monitoring [8], [10], [17]-[19]. Unfortunately, all these studies
are conducted at a small scale, i.e., a small number of fish in
small tanks. Compared to fish behavior, excess feed detection is
rarely addressed except [12], where feeding control is achieved
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Proposed Monitoring System

Fig. 1. Given the video input, our system performs real-time monitoring and
feeding decision for a highly dense fish tank.

by estimating fish appetite. However, the tank in [12] is also
small and fish can be easily segmented.

By collaborating with an active aquaculture fish farm, we
have developed a CV-based automated feeding control system.
A video camera is placed above the water surface of a highly
dense fish tank with around 10,000 fish, as shown in Fig. 1. The
camera captures only part of the water surface due to the large
tank size. Videos are directly transferred to a host computer that
performs real-time analysis on the state of fish behavior. More-
over, the system is also programmed to take immediate actions
in stopping the feeding process when needed.

In this paper we present an efficient CV system to continu-
ously monitor fish eating activity, detect excess feed, and auto-
matically control the feeding process. A two-class classifier is
learned to distinguish whether fish are actively consuming feed
or not. To detect the amount of feed floating on the water sur-
face, we propose a novel two-stage approach. First, a supervised
learned correlation filter is applied to the test frame in order
to detect every individual feed. Second, a Support Vector Ma-
chine (SVM) classifier is deployed as a refinement step of the
correlation filter output, which attempts to suppress falsely de-
tected feed while preserving true feed. Furthermore, we propose
to detect feed in an optimum local region only, rather than the
entire frame whose accuracy and efficiency are both less than
ideal. Using the particle filter technique, the local region is esti-
mated by maximizing the correlation between the number of lo-
cally detected feed and that of true feed in the entire frames. Fi-
nally, based on continuous measurements from fish activity and
feed detection, various actions take place to control the feeding
process.

This paper makes the following contributions: 1) a fully auto-
mated aquaculture monitoring system that controls feeding for
a highly dense fish tank, 2) an accurate measure of the fish ac-
tivity, and a continuous detection of excess feed from an op-
timum local region, and 3) the video dataset and the labels that
are publicly available for future research.

II. PROPOSED METHOD

Monitoring the fish eating activity along with making sure the
fish are provided with the correct amount of feed are the main
goals of our system. Our system architecture is shown in Fig. 2,
and we present each part in the following sections.
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Fig. 2. The architecture of the proposed feeding control system.

A. Fish Activity Classification

To classify the fish activity, a set of features is extracted to
best characterize the fish while consuming feed. Due to the large
size of video frames, as well as the non-uniform spatial distribu-
tion of fish activity within the tank, a video frame I is uniformly
divided by a 3 x 3 grid. Features v/ are extracted from each of
9 different regions and concatenated to a single feature vector v
=(v T, e V9T)T to represent one video frame.

When the feeding starts, ripples and waves are generated
throughout the tank due to fish breaking the water surface.
Hence, one simple feature is the difference between the con-
secutive frames AI/ = I/ — I/ |, which indicates the abrupt
changes in waves and ripples on the water surface. Furthermore,
the existence of waves is normally accompanied with light
reflections. Therefore, by setting a proper threshold (7;) to I, we
obtain a binary image I, that captures the brighter light reflec-
tions. While a fixed 7; is used for all our data, a learning-based
adaptive threshold 7; (e.g., [15]) is desired in the future for
applying our system to different fish farms. The feature of one
region is computed by v/ = (u(AF), (X)), o(I7)) T, where p
and o denote the mean and standard deviation respectively. A
27-dim feature is extracted for one video frame.

By using training videos with labels on the fish activity, we
learn a two-class classifier via standard learning schemes. Given
a test video, such a classifier makes a decision on a per-frame
basis. However, in our application the most desired capability
is to accurately measure the duration when fish are actively
eating by estimating the onset and offset, i.e., the beginning and
end of this active eating duration. Therefore, we perform two
post-processing steps following the frame-based classifier deci-
sion. First, to reduce the noise in classification results, a sliding
voting window (SVW) process is applied, where the majority
vote within a 10-frame window is treated as the classification re-
sult of the last frame within the window. Second, using a larger
window of 100 frames, we estimate the onset and offset of the
active eating duration by monitoring when the fraction of “ac-
tive” frames has increased or decreased to the half. Note that,
in both post-processing steps, our system operates in an online
processing mode, i.¢., only the past, instead of the future, frames
are used in decision making.

B. Feed Detection

Accurately estimating the amount of excess feed floating on
the water is a critical component for any intelligent aquaculture
system. However, detecting individual feed is very challenging
due to the tiny feed size, partially submerged into the water, and
light reflection. Further, feed detection should be conducted in
real time for immediate feeding control. These challenges moti-
vate us to develop a carefully designed feed detector with three
components: 1) correlation filter is used to detect all possible

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015

feed, 2) a classifier built on rich features suppresses non-feed
from the first component, and 3) a local region is searched to
maximize the computational efficiency and accuracy. We now
discuss each component in detail.

Correlation Filter for Feed Detection: The efficiency chal-
lenge is attributed by the contrast between the large frame size
(1080 x 1960 pixels) and tiny feed size (~30 pixels), i.e., a
huge number of local candidates to be classified as feed vs.
non-feed. To address this challenge, we like to efficiently rule
out the majority of non-feed candidates while preserving most
true feed. Correlation filter (CF) is chosen for this purpose due
to its proven success in object detection [11], [4].

Specifically, we adopt the unconstrained scalar feature ap-
proach [3], which is learned by minimizing the average Mean
Square Error between the cross correlation output and the de-
sired correlation output for all training images, i.e.,

N
L1
min =[x & h - g3 + A3, (1

h N .
i=1

where h, x;, g;, A, and & are the CF, visual features of ith
image, desired output, regularization weight, and convolution,
respectively. Converting into the frequency domain results in,

1 & T
h= [+ =3 XIx, —N"Xig . 2
5 X ] l“g Zg], &)
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where " is the FFT operation, X is the diagonal matrix with X on
its diagonal, 1 is conjugate transpose, and [ is the identity ma-
trix. A set of N local patches (of size LX L) with true feed in
the center are used as the training images. For efficiency the raw
intensity is used as x. Given a test image x;, the convolution
output x; & h containing peaks larger than a threshold 7 are de-
tected as the candidate feed. We choose 7 where the maximum
true detection and minimal false alarm are achieved.

Classifier for Feed Refinement: While the CF can efficiently
nominate candidate feed, it is likely to have false alarm due to
its simple intensity feature. Therefore, the second component of
feed detection focuses on the accuracy challenge, by performing
an accurate two-class (feed vs. non-feed) classification on the set
of candidate feed resulted from the CF. To learn the classifier,
the same patches in learning the CF are also used as positive
training samples, while the false alarm candidate patches are
used as negative samples.

Given the much fewer number of candidate feed to classify
than the CF, we can afford to extract a rich feature represen-
tation for classification. First, feed is visually distinguishable
by its color. We employ the Bag-of-Words (BoW) [16] to learn
the color feature. Using K-means clustering on the Cartesian
representation of the RGB color space, d.(= 20) code words,
{Sd}g;p indicate the representative colors in all training sam-
ples. For a training sample P, we convert each pixel to the
nearest color words, and generate a d.-dim BoW histogram
fo(i) = > (4 )ep 0(i = argming ||[P(u,v) — s4ll2), where d
is the indicator function. This histogram is further normalized by
f. = #% Second, since feed has unique edges with
certain orientation, for each training sample we also compute
the 36-dim Histogram of Oriented Gradients (HOG) feature f},
from 2 x 2 cells [9]. Finally, a 56-dim feature f = (£./,£,7) 7 is
extracted from each sample, the collection of which is fed into
kernel SVM to learn the classifier.
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TABLE I
RULES FOR CONTROLLING THE FEEDING PROCESS

[ # of Feed | Fish Active | Feeding Machine [ Action ]

High Yes On Off
High No On Off
Low Yes Off On
Low No On Off

Locating the Optimum Local Region: While the two-step
feed detection can be applied to the entire video frame, we pro-
pose to use a specific local region instead. First, due to inevitable
light reflection on certain areas, detection in the entire frame
may lead to worse performance than in a local region. Second,
the latter is also more efficient. Finally, a specific local region
should be chosen rather than a random one. Due to non-uniform
spatial distributions of light reflection, feed in certain local re-
gion are more detectable. Further, since the subset of feed de-
tected locally may not well represent the overall amount of ex-
cess feed, we propose to search the optimum local region by
maximizing the correlation between the number of locally de-
tected feed and that of true feed in the frame. This strategy is
also motivated by the fact that the feed control relies more on
the dynamics, than the absolute number, of feed.

One may use brute-force search to find the optimum local
region. Alternatively, we adopt a more efficient particle filter-
based approach [2], [14]. The basic idea is to iteratively update
a set of particles {c*, w*}£_|  where c” is the location and size
of a local region and w” is its weight, so that all particles con-
verging toward the optimum local region. We manually label
the ground truth feed for randomly chosen n entire frames, each
with the number of feed being G*. All K particles are initially
distributed uniformly within the image frame, and the weight is
computed by Pearson’s correlation coefficient,

. NI (T — plTH)(Gi — (@)
(S0 (TF — (TF)*) (S0, (G — w(@))?)

where TF is the estimated number of feed in ¢*, and p(T*) is
the mean of T over n images. At each iteration, a CDF-based
resampling is conducted where the particles with larger w* will
have higher chances to be selected in the next iteration than
the ones with smaller w”*. Once a particle is selected, we add
a random perturbation to c*. With sufficient iterations, all K
particles converge to regions with larger weights, where the one
with the largest w* is chosen as the optimum local region.

» 3)

[N

C. Automatic Control of the Feeding Process

The purpose of classifying the fish behavior at every frame, as
well as detecting the amount of excess feed, is to automatically
control the feeding process without the need of human interven-
tion. Ultimately, the goal is to prevent both overfeed and under-
feed to the fish tank. Based on the per-frame results obtained
from both the fish activity classification and the feed detection,
a continuous decision is made on whether to stop or continue
the feeding. We use a rule-based method as listed in Table I.
It represents some critical conditions under which the “action”
of stopping or continuing feeding will be taken immediately.
For example, if the number of feed is high and continuously in-
creasing over a long period of time while the machine is still
feeding, the machine needs to be stopped until the number of
feed drops below a certain level.
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TABLE II
THE ACCURACY OF FISH ACTIVITY CLASSIFICATION

[ Method [Error rate (%) ]Error rate w/ SVW(%)[Onset error (Sec.)[Offset error (Sec.)]

MLE 1.79 1.64 6.16 6.41
Adaboost 1.63 1.49 5.56 7.24
SVM 1.62 1.62 6.08 7.33

III. EXPERIMENTAL RESULTS

Our dataset consists of 21 videos of a top-view aquaculture
fish tank. These videos were captured at 10 FPS, with 1080 x
1960 pixels and an average length of 5, 684 frames. The first
20 videos are captured under normal circumstances. Each video
is manually labeled with the onset and offset frames of the fish
eating activity, which is used to evaluate the fish activity classi-
fication. The last video exhibits a huge amount of excess feed,
since the feeding machine is intentionally switched on for a
longer period of time. To evaluate the feed detection, we manu-
ally label feed in n» = 12 frames randomly taken from the video
at different stages of the feeding process. We conduct the la-
beling twice and only the feed labeled in both trials are claimed
as true feed. The number of true feed ranges from 22 to 856 per
frame, with the total of 4, 485 feed.

A. Fish Activity Classification

The experiment of the fish activity classification follows a
Leave-One-Video-Out-Cross-Validation scheme. We use three
classifier learning schemes: Maximum Likelihood Estimations
(MLE), Adaboost and SVM. As shown in Table II, the fact
that all three methods achieve good performance demonstrates
the effectiveness of our feature representation. The best per-
forming classifier is Adaboost with a per-frame-based error rate
of 1.49%. The “onset error” measures the difference between the
estimated onset and the labeled ground-truth onset. The offset
error is slightly larger than the onset, partially because there is
more inconsistency in labeling the offset among videos.

B. Feed Detection

We set the parameters as N = 2,000, L = 25, 7, = 229, 7
= 0.53, and g; is a 2D Gaussian centered at the targets loca-
tions with a variance of 2 and peak amplitude of 1. The default
parameters in LibSVM are used for SVM learning.

Fig. 3 compares the results of the CF in the local region alone
vs. having a SVM refinement classifier following the CF. The
Normalized False Alarm (NFA) is the number of falsely de-
tected feed divided by the number of true feed. Remarkably,
the refinement classifier reduces the amount of false alarm by
nearly 50%, while maintaining the similar true detection rate.
For example, one good point on ROC has the detection rate of
90.8% at a NFA of 0.3. Further, the results of operating on the
entire frame is much worse than on the local region. Finally, we
also employ the SVM classifier for feed detection without first
applying the CF. It can detect 85.3% of feed, but the NFA is con-
siderably high at 4.5, not to mention the much lower efficiency.
The superior over this baseline demonstrates the excellent ac-
curacy and efficiency of our two-step approach.

An illustration of feed detection procedure is shown in
Fig. 6. Columns 1-2 are successful at detecting all feed with no
false alarms. Columns 3-4 have missing detection, but no false
alarms. Columns 5-8 illustrate variations of false alarms.

C. Local Region Estimation

The number of particles for localizing the optimum local re-
gion is 100. Since the results of the particle filter depend on the
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Fig. 6. Feed detection procedures with each column being one local region of 150 X 150 pixels: (a) the original image with green circles indicating labeled
ground-truth feed, (b) the CF output (green and red), where the red squares are false alarms, and (c) the results of the SVM classifier in a binary image where the
white regions are the final detected feed. Note the reduced false alarms from (b) to (c) (best viewed in color).
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initialization, we repeat this experiment three times with dif-
ferent initial sizes of local regions. The maximum w”* for three
runs are shown in Fig. 4. Note that the final iterations of all runs
achieve a similar weight of 0.97, due to the huge overlap in the
final optimum local region. The optimum local region is found
to be centered at (224 £ 3, 256 £ 4), with a size of 258 x 258.
The fact that all three runs converge to the same local region
gives a strong indication of achieving the global optimal solu-
tion for this optimization.

To illustrate the effectiveness of the particle filter, we plot
four signals: ground-truth feed in the entire frame G;, T; when
feed detection is applied to the frame, T with the maximum
w” at the initialization and at the final iteration. To compensate

k
different data ranges, we plot the normalized feed as T‘+,5T)

in Fig. 5. Compared to the initialization and the global feed de-
tection, the feed estimation at the optimum local region has the
highest correlation with the ground-truth feed. Therefore, the
feeding control based on the local region is almost the same as
based on the true feed of the entire frame.

D. Computational Efficiency

The computational efficiency is an important metric for any
computer vision system. We evaluate the efficiency using a
Matlab implementation on a conventional Windows 8 desktop
computer with an Intel i5 CPU at 3.0 GHz with 8 GB RAM.
First, for classifying fish activity, most of the computation
is on the feature extraction, which is 0.106 sec. per frame.
The total time for classifying the activity of one frame via
MLE, Adaboost and SVM are 0.156, 0.108 and 0.123 sec.,
respectively. Second, the efficiency of feed detection depends
on several factors, such as the size of the local region, the
number of candidate feed for the SVM classifier. The total
time for the CF step in the optimum local region is 0.006
seconds. The refinement classifier requires 0.004 sec. to extract
features and classify a single candidate feed resulted from the
CF. The average total time to detect feed in the local region is
0.085 seconds. In summary, our entire system operates at 5+
FPS. With the future C++ implementation, we believe that our
system can operate in real time on a conventional PC.

IV. CONCLUSIONS

A fully automatic system is developed to understand fish
eating behavior in a highly dense aquaculture tank. The ability
to classify whether the fish are actively consuming feed along
with the continuous detection of excess feed provides valuable
information for feeding control in the tank. In the future, we
will enhance the system by providing a continuous measure
of how active the fish are in a scale ranging from zero to one,
and leverage shot boundary detection [13] for more precise
onset/offset detection. We also plan to extend the system to
infer fish growth from the behavior of fish movement, with the
goal of developing computational and quantitative approaches
toward a comprehensive understanding of fish growth.
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