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Automated Online Exam Proctoring
Yousef Atoum, Liping Chen, Alex X. Liu, Stephen D. H. Hsu, and Xiaoming Liu

Abstract—Massive open online courses (MOOCs) and other
forms of remote education continue to increase in popularity
and reach. The ability to efficiently proctor remote online exam-
inations is an important limiting factor to the scalability of this
next stage in education. Presently, human proctoring is the most
common approach of evaluation, by either requiring the test taker
to visit an examination center, or by monitoring them visually
and acoustically during exams via a webcam. However, such
methods are labor-intensive and costly. In this paper, we present
a multimedia analytics system which performs automatic online
exam proctoring. The system hardware includes one webcam,
one wearcam, and a microphone, for the purpose of monitoring
the visual and acoustic environment of the testing location. The
system includes six basic components which continuously estimate
the key behavior cues: user verification, text detection, voice
detection, active window detection, gaze estimation and phone
detection. By combining the continuous estimation components,
and applying a temporal sliding window, we design higher-
level features to classify whether the test taker is cheating
at any moment during the exam. To evaluate our proposed
system, we collect multimedia (audio and visual) data from 24
subjects performing various types of cheating while taking online
exams. Extensive experimental results demonstrate the accuracy,
robustness, and efficiency of our online exam proctoring system.

Index Terms—Online exam proctoring (OEP), user verification,
gaze estimation, phone detection, text detection, speech detection,
covariance feature.

I. INTRODUCTION

MASSIVE open online courses (MOOCs) offer the po-
tential to greatly expand the reach of today’s edu-

cational institutions, both by providing a wider range of
educational resources to enrolled students and by making
educational resources available to persons who cannot access
a campus due to location or schedule constraints. Instead
of taking courses in a typical classroom on campus, now
students can take courses anywhere in the world using a
computer, where educators deliver knowledge via various
types of multimedia content. According to a recent survey [1],
there are more than 7.1 million students taking at least one
online course in 2013 in America. It also states that 70% of
higher education institutions believe that online education is a
critical component of their long-term strategy.

Exams are a critical component of any educational program,
and online educational programs are no exception. In any
exam, there is a possibility of cheating, and therefore its
detection and prevention is important. Educational credentials
must reflect actual learning in order to retain their value to so-
ciety. The authors in [15] state that the percentage of students
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Fig. 1: Based on the audio-visual streams captured by a wearcam, a
webcam with an integrated microphone, our OEP system automati-
cally and continuously detects cheat behaviors during online exams.

committing academic cheating activity is on the rise. Nearly
74% of students in 2013 indicated it would be somewhat
easy to cheat in online exams. They also found that in 2013,
about 29% of the students admitted to cheating in online
exams. When exams are administered in a conventional and
proctored classroom environment, the students are monitored
by a human proctor throughout the exam. In contrast, there is
no convenient way to provide human proctors in online exams.
As a consequence, there is no reliable way to ensure against
cheating. Without the ability to proctor online exams in a
convenient, inexpensive, and reliable manner, it is difficult for
MOOC providers to offer reasonable assurance that the student
has learned the material, which is one of the key outcomes of
any educational programs, including online education.

The common testing procedure for online learners is the fol-
lowing: students come to an on-campus or university-certified
testing center and take an exam under human proctoring. New
emerging technologies, such as, e.g., Kryterion and ProctorU,
allow students to take tests anywhere as long as they have
an Internet connection. However, they still rely on a person
“watching” the exam-taking. For example, Kryterion employs
a human proctor watching a test taker through a webcam from
a remote location. The proctor is trained to watch and listen
for any unusual behaviors of the test taker, such as unusual
eye movements, or removing oneself from the field of view.
He can alert the test taker or even stop the testing.

In this paper, we introduce a multimedia analytics system
to perform automatic and continuous online exam proctoring
(OEP) . The overall goal of this system is to maintain academic
integrity of exams, by providing real-time proctoring to detect
the majority of cheating behaviors of the test taker. To achieve
such goals, audio-visual observations about the test takers
are required to be able to detect any cheat behavior. Many
existing multimedia systems [23], [35] have been utilizing
features extracted from audio-visual data to study human
behavior, which has motivated our technical approach. Our
system monitors such cues in the room where the test taker
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resides, using two cameras and a microphone. As shown in
Fig. 1, the first camera is located above or integrated with the
monitor facing the test taker. The other camera can be worn
or attached to eyeglasses, capturing the field of view of the
test taker. In this paper, these two cameras are referred to as
the “webcam” and “wearcam” respectively. The webcam also
has a built-in microphone to capture any sound in the room.
Using such sensors, we propose to detect the following cheat
behaviors: (a) cheat from text books/notes/papers, (b) using a
phone to call a friend, (c) using the Internet from the computer
or smart phone, (d) asking a friend in the test room, and (e)
having another person take the exam other than the test taker.

We propose a hybrid two-stage algorithm for our OEP
system. The first stage focuses on extracting middle-level
features from audio-visual streams that are indicative of cheat-
ing. These mainly consists of six basic components: user
verification, text detection, speech detection, active window
detection, gaze estimation, and phone detection. Each com-
ponent produces either a binary or probabilistic estimation of
observing certain behavior cues. In the second stage, a joint
decision across all components is carried out by extracting
high-level temporal features from the OEP components at the
first stage. These new features are utilized to train and test a
classifier to provide real-time continuous detection of cheating
behavior. To evaluate the OEP system, we collect multimedia
(audio and visual) data from 24 subjects performing various
types of cheating while taking a multiple choice and fill in the
blank math exam. Extensive experimental results demonstrate
the accuracy, robustness, and efficiency of our online exam
proctoring system in detecting cheating behavior.

This paper makes the following contributions:
• Proposes a fully automated online exam proctoring sys-

tem with visual and audio sensors for the purpose of
maintaining academic integrity.

• Designs a hybrid two-stage multimedia analytics ap-
proach where an ensemble of classifiers extracts middle-
level features from the raw data, and transforming them
into high-level features leads to the detection of cheating.

• Collects a multimedia dataset composed of two videos
and one audio for each subject, along with label infor-
mation of all cheating behaviors. This database is publicly
available for future research 1.

II. RELATED WORK

Over the years, the demand for online learning has increased
significantly. Researchers have proposed various methods to
proctor online exams in the most efficient and convenient way
possible, yet still preserve academic integrity. These methods
can be categorized into three categories: (a) no proctoring [7],
[34], (b) online human monitoring [8], [13], and (c) semi-
automated machine proctoring [17], [24]. No proctoring does
not mean that test takers have the freedom of cheating, instead
cheating is minimized in various ways . In [7], the authors
believe they can prompt academic honesty by proposing eight
control procedures that enable faculty to increase the difficulty

1https://www.cse.msu.edu/∼liuxm/OEP.html

and thus reduce the likelihood of cheating. In [34], the authors
offer a secure web-based exam system along with network
design which is expected to prevent cheating.

Online human monitoring is one common approach for
proctoring online exams. The main downside is that its very
costly in terms of requiring many employees to monitor the
test takers. Researchers have also proposed different strategies
in full monitoring, such as in [13], where they use snapshots
to reduce the bandwidth cost of transmitting large video
files. Authors in [24] attempt to do semi-automated machine
proctoring, by building a desktop robot that contains a 360◦

camera and motion sensors. This robot transmits videos to
a monitoring center if any suspicious motion or video is
captured. The main problem is that, a single camera cannot see
what the subject sees, and as a result even humans may have
a hard time detecting many cheating strategies. For example,
a partner who is outside the camera view, but who can see
the test questions (e.g., on a second monitor), could supply
answers to the test taker using silent signals, or writing on a
piece of paper which is visible to the test taker.

Among all prior work, the most relevant work to ours is
the Massive Open Online Proctoring framework [17], which
combines both automatic and collaborative approaches to
detect cheating behaviors in online exams. Their hardware
includes four components: two webcams, a gaze tracker, and
an EEG sensor. One camera is mounted above the monitor
capturing the face, and the other is placed to the right hand side
of the subject capturing the profile of the subject. Motion is
used for classification by extracting dense trajectory features.
However, this work is limited to only one type of cheating (i.e.,
reading answers from a paper), with evaluation on a small set
of 9 subjects with 84 cheat instances. Since many types of
cheating do not contain high-level motion (see example above
with partner off-camera), it is not clear how this method can
be extended to handle them. To the best of our knowledge,
there is no prior work on a fully automated online proctoring
system that detects a wide variety of cheating behaviors.

Beyond educational applications, in the multimedia commu-
nity, there is prior work on audio-visual-based behavior recog-
nition. Authors in [35] study audio-visual recordings of head
motion in human interaction, to analyze socio-communicative
and affective behavioral characteristics of interacting partners.
[21] automatically predicts the hirability in real job interviews,
using applicant and interviewer nonverbal cues extracted from
the audio-visual data. In [10], they automatically estimate high
and low levels of group cohesion using audio-video cues.
In [16], the authors use audio-visual data to detect a wide
variety of threats and aggression, such as unwanted behaviors
in public areas. Their two-stage methodology decomposes
low-level sensor features into high-level concepts to produce
threat and aggression detection. While there is similarity
between their methodology and ours, our unique two-camera
imaging allows us to leverage the correlation between the two
distinct visual signals. The addition of audio to video was
also proven to complement many visual analysis problems,
such as object tracking [14], event detection retrieval in field
sports [27], and vision-based HCI system [23].

One of our novel ideas is to use a second wearcam for

https://www.cse.msu.edu/~liuxm/OEP.html
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Fig. 2: The architecture of the Online Exam Proctoring (OEP) system.

capturing the full field of the view of the subject. This is
similar to the research in first person vision where visual
analysis is performed on the wearcam. For example, [30]
temporally segments human motion into actions and performs
activity classification in the context of cooking. [31] uses
a wearcam to detect the iris and estimate the visual field in
front of the subject, which helps to identify where exactly the
subject is looking. In contrast to the single wearcam in the
first person vision, our OEP system utilizes two cameras to
capture both what the subject sees and his/her own behavior,
which enables comprehensive behavior profiling.

III. PROPOSED METHOD

In this work, we aim to develop a multimedia analysis
system to detect a wide variety of cheating behaviors during
an online exam session. Our proposed online exam process
includes two phases, the preparation phase and exam phase.
In the preparation phase, the test taker has to authenticate
himself before beginning the exam, by using a password
and face authentication. This phase also includes calibration
steps so as to ensure that all sensors are connected and
functioning properly. Further, the test taker learns and verbally
acknowledges the rules of using the OEP system, such as, no
second person is allowed in the same room, the test taker
should not leave the room during the exam phase, etc.

In the exam phase, the test taker takes the exam, while under
the “monitoring” of our OEP system for real-time cheating
behavior detection. As shown in Fig. 1, we use three sensors
(i.e., a webcam, wearcam and microphone) to capture audio-
visual cues of the exam environment and the test taker. The
sensed data is first processed using six components to extract
middle-level features as seen in Fig. 2. These components
are: user verification, text detection, speech detection, active
window detection, gaze estimation, and phone detection. After
that, the middle-level features within a temporal window are
fused to generate high-level features, which are then used for

training and testing a cheat classifier. The high-level features
include the component-dependent features, such as the mean
and standard deviation within a window, and features based
on correlation among the components, such as the covariance
features [32]. It is crucial to use a diverse and rich set of
features to improve the overall detection performance of the
OEP system, since the detection of some cheating behaviors
relies on the ignition of multiple behavior cues.

The remainder of this section describes the following topics:
(A) the hardware components of the OEP system, (B) through
(G) the six basic components of the system, and (H) the high-
level features and classification of the cheating behavior.

A. Hardware Components

During an exam, the test taker may cheat by hearing or
viewing forbidden information. Therefore, the OEP system
hardware should be designed in a way to hear what the test
taker hears and see what the test taker sees. This leads to our
design of three hardware components: a webcam, a wearcam,
and a microphone. The webcam is mounted on top of the
monitor facing the test taker and serves multiple purposes, e.g.,
knowing who is the test taker, what is he doing, and where
is he looking. The wearcam is a wearable camera intending
to be attached to the test taker’s head, such that the camera
is pointing to the same pose direction as the face. Since the
wearcam essentially captures the field of view of the test taker,
analyzing its video content enable us to detect the “viewing-
based” cheating behaviors, such as reading from books, notes,
papers, smart phones. The wearcam contributes greatly in
estimating the head gaze, which is an important behavior cue.
Note that employing the wearcam is a distinct novelty of
our system design, as well as an advantage over prior exam
proctoring systems. This design is not only motivated by the
need to see what the test taker sees, but also the growing
popularity and decreasing cost of wearable cameras. Finally, as
an integrated device of the webcam, the microphone captures
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Fig. 3: The extracted region of the face (green) and the body (red).

what the test taker hears - based on our rules, any detected
human voice is considered as potential cheating.

During the system design, we experimented to find a suit-
able prototype for the wearcam. We initially tested the system
with a Sony action cam by utilizing a headband. However,
the relatively heavy weight and the need to synchronize
the webcam and wearcam made this option undesirable. We
finally decided to attach a regular wired webcam to a pair of
eyeglasses, considering the fact that webcams are becoming
smaller in size, lighter in weight, cheaper over the years, and
have real-time wireless capabilities. Similar ideas have also
been adopted in the research community to understand human
behavior [30], [31]. Note that our OEP system does not depend
on specific choice of cameras, if a more suitable wearcam is
available in the future, we can easily adopt it in our system.

Both cameras capture video at a resolution of 640 × 480
and a frame rate of fs = 25 fps. Since the OEP system starts
to grab video streams from two cameras at the same time, the
two video and audio streams are automatically synchronized
during the test session.

B. User Verification

One of the major concerns in online exams is that the test
taker solicits assistance from another person on all or part
of an exam. An OEP system should be able to continuously
verify whether the test taker is who he claims to be throughout
the entire exam session. The test taker is also expected to
take the exam alone without the aid of another person in
the room. While there are various options for continuous user
authentication, such as keystroke dynamics, we decide to use
face verification due to its robustness.

There are a number of challenges for user verification in
OEP. First, face detection under various lighting and poses
is difficult. Second, due to the partial occlusion caused by
the eyeglasses with the attached wearcam (Fig. 2), the perfor-
mance of face detection and verification can be more fragile.
Finally, although face detection has improved substantially
over the years, occasional miss detection and false alarm is
inevitable, and how to handle this is another challenge.

We propose to overcome these challenges by using an
approach integrating both face and body cues. We use the Min-
imum Average Correlation Energy (MACE) filter to perform
face verification [28]. During the preparation phase, initial face
authentication is conducted by matching the webcam-captured

Algorithm 1: User verification algorithm.
Data: A new frame It, hf

Result: vp, vn

Initialization: v = 0 , c0 = c1 = 0 ;
Viola-Jones face detector → vn(t) ;
switch vn(t) do

case 0
if c0 > τ0 then

pt = vp(t) = c0 = 0; % warning is sent
else

c0 + +;
vp(t) = vp(t− 1);
pt = F (vp(t), v, t̄, p̄);

case 1
c0 = c1 = 0;
if v = 1 then

Compute ht, pb = hT
t hb;

if pb > τv & pt−1 > τv then
pt = F (vp(t), v, t̄, p̄);

else
v = 0;

if v = 0 then
ct = xt

⊗
hf , vp(t) = PSR(ct);

pt = F (vp(t), v, t̄, p̄);
if pt > τv then

v = 1, t̄ = t, p̄ = pt;
case > 1

if c1 > τ0 then
pt = vp(t) = c1 = 0; % warning is sent

else
c1 + +;
vp(t) = vp(t− 1);
pt = F (vp(t), v, t̄, p̄);

faces with a mugshot of the test taker. In the meantime, a set
of frontal-view images of the test taker is captured, where we
detect the faces via the Viola-Jones face detector [33], and train
a MACE Filter hf . As shown in Fig. 3, from the body region
of the images, we extract a 160-dim HSV color histogram of
the clothing hb. The body region has a width equal to twice
the width of the detected face, and a height equal to half the
height of the face. During the exam phase, when a new frame
It is captured by the webcam, we first perform face detection.
Depending on the number of detected faces vn(t), we handle
it correspondingly, as described in Algorithm 1.

If only one face is detected in the new frame (vn(t) = 1);
this is the most likely case since the test taker is required to
take the exam alone. Let xt be the appearance feature of the
detected face, pt be the probability of user authenticity, and
v be an indicator flag on whether the test taker is verified. If
the user is not verified (i.e., v = 0) in the previous frame, we
verify the user by performing cross correlation ct = xt

⊗
hf ,

where ct is the correlation output at time t. For computational
efficiency, correlation is computed in the Fourier domain using
Fast Fourier Transform (FFT), and then transformed back to
the spatial domain via inverse FFT. Savvides et al. showed that
c is sharply peaked for authentic subjects, and does not exhibit
a strong peak for impostors [28]. The Peak-to-Sidelobe Ratio
(PSR) is defined to measure the strength of the correlation
peak, where a PSR value greater than five is considered as
an authenticated user. We denote the PSR value computed at
time t as vp(t), which is further converted into the probability
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Algorithm 2: Face verification probability F .
Data: vp(t), v, t̄, p̄
Result: pt
if v = 0 then

if vp(t) < 5 then
pt = 0;

else if vp(t) > 10 then
pt = 1;

else
pt = 1

5
(vp(t)− 5);

else
pt = p̄e−k(t−t̄);

measure of user authenticity pt, by using the function F ,

pt = F (vp(t), v, t̄, p̄), (1)

as explained in Algorithm 2. If pt is larger than a predefined
threshold τv , the face is verified, and we denote t̄ the last
verified time and p̄ the last verified probability. Otherwise the
face continues to be verified in the next frame.

When the next frame arrives and only one face is detected,
if the user is verified before (v = 1), we rely on body tracking
due to its robustness to head poses, instead of face verification.
Specifically, we compute the histogram of the clothing ht, and
compare it to hb. If their similarity pb is larger than a threshold
τv , pt is calculated as pt = p̄e−k(t−t̄), where k is the decay
speed of the exponential function. After ∆t = t − t̄ seconds
from the last verification time, the face needs to be verified
again even if pb > τv all the time. This is reasonable because
an impostor could wear the same clothes as the test taker.

There are cases where no face is detected in the current
frame (vn(t) = 0). When the number of consecutive frames
without detected faces, c0, is bigger than a threshold τ0,
the system determines that the user has left the exam and a
warning is sent with an assigned high probability of cheating.
Face verification is required to continue the exam when the
user appears again. If c0 ≤ τ0, we do not make any decision
and wait for the next frame. This tolerance is necessary
because the face might not be detected in certain scenarios,
e.g., the large pose, illumination changes or occlusion.

If more than one face is detected (vn(t) > 1), we also
consider some tolerance, similar to the case of vn(t) = 0.
When the number of consecutive frames with multiple detected
faces, c1, is less than τ0, we do not make any decision and
wait for the next frame. Otherwise there is indeed more than
one person in front of the computer. A warning is sent, with
a high probability of cheating.

The user verification component provides continuous es-
timation per frame regarding the number of faces and PSR
values, which are stored in two vectors, “numFaces” and
“facePSR”, respectively. The numFaces vector, vn, is a direct
indication of cheating when vn(t) 6= 1. However, the facePSR
alone, vp, may only implicitly represent cheating. This output
will be converted to high-level features to serve in the process
of detecting other cheat behaviors as seen in Fig. 2.

Fig. 4: Positive (left) and negative (right) samples for text detection.

C. Text Detection

In a closed-book exam, reading from text is a major form of
cheating, where the text can be from a book, printout, notes,
etc. It is obvious that the webcam alone cannot effectively
detect this cheat type, since the webcam might not “see” the
book or printout. On the other hand, the wearcam captures
everything in the field of view of the test taker. Hence, any
type of text seen by the test taker can very likely be seen, and
detected, through the wearcam.

While text detection is a well-studied topic, detecting text
in online exam could be challenging, since the test taker may
attempt to cheat from text with small font, or place the text
far away from the camera. Further, we need to differentiate
text on printed papers vs. the text on the computer screen or
the keyboard, since detection of the latter is not considered
as cheating, as shown in Fig. 4. Note that for this work, we
focus on printed text only, rather than handwriting. In the case
of handwriting, the aid of other capabilities might be needed,
such as estimating the eye gaze of the user, since cheating
from text requires the test taker to look at it for some time.
Moreover, motion blur could also be introduced due to fast
head movements. In such cases, a motion blur detector would
be employed and then we can either skip text detection on
these frames with blurred motion, or simply skip the frames.

We develop a learning-based approach for text detection.
First, we collect a set of 186 positive training images that
contain text in a typical office environment, and 193 negative
training images (Fig. 4). Then a learning algorithm based on
the GIST features [22] is applied to the training images. We
perform cross-validation to estimate the algorithm’s parame-
ters, and finally the algorithm can predict the probability of
text in a testing video frame.

The GIST feature is well known in the vision community.
For example, [22] introduces how to compute GIST features,
based on a low dimensional representation of a given image,
termed “Spatial Envelope”. A set of perceptual dimensions
(naturalness, openness, roughness, expansion, ruggedness) that
represent the dominant spatial structure of an image is used.
Since the GIST features of images are 512-dimensional vec-
tors, we apply PCA to reduce them to a lower dimension,
which are then used for training a binary SVM classifier. Given
a testing video frame, the output of the SVM classifier is
stored as one element of the “textProb” vector, denoted by
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Sound type # files Length Sound type # files Length
speech 4 154 keyboard typing 7 18
burp 3 2 key jingle 5 21

chair moving 1 8 paper moving 5 14
cough 5 7 phone ring 7 16

door knocking 6 8 runny nose 3 5
open/close door 4 4 sigh 8 10

drink 7 15 silence 2 9
fart 4 6 breath 5 33
gasp 4 4 spit 3 4

hiccup 5 2 steps 6 25

TABLE I: Collected sound samples, with the total number and
duration length (in seconds) of sound files.

vt, representing the probability of detecting text in a frame.

D. Speech Dectection

One of the most likely cheating behaviors in online exams
is to seek verbal assistance from another person in the same
room, or remotely via a phone call. In fact, from the audio-
visual dataset collected in our work, this is the most frequent
cheating behavior. By requiring the test taker to take the exam
in a quiet room with no one around, any human speech being
detected could be considered a potential cheating instance.
Therefore, in this component we design algorithms to detect
speech from acoustic signals.

There are unique challenges for speech detection in OEP.
Test takers who attempt cheating tend to use a low voice while
speaking to others. Therefore, one challenge is to be able
to detect speech at any level of amplitude. Second, speech
can be confused with many environmental sounds in the test
room, such as noises generated from moving objects (e.g.,
chair, door, or keyboard), while others might be caused by the
test taker, e.g., coughs or breathing. This can be especially
challenging when speech is overlaid with other sounds.

Following a learning-based speech detection scheme, we
first collect a wide variety of typical sounds in an office
environment, such as breath, burp, chair moving, cough, steps,
etc. Table I shows the number of files and the length of the
audios for each sound category. These sounds are either found
online [4] or recorded by ourselves. We only consider speech
as the positive samples, while the remaining categories of
sound are negative. In total, the lengths of positive and negative
samples are 154 and 211 seconds, respectively.

Unlike text detection where the unit of classification is an
image, the unit of speech detection is an acoustic segment.
A segment is defined either when the amplitudes of all its
samples are larger than a threshold, or with a fixed duration
Ls. Due to its simplicity and robustness, we decide to adopt
the latter approach. It is a trade-off to determine the length of
Ls, as the longer duration leads to a higher detection rate for
detecting long speech, but a lower rate for shorter speech.

The acoustic segment is represented by the short-time
Fourier transform (STFT) using Hamming windows [9]. We
divide the frequencies from 200 Hz to 4 KHz into 16 dif-
ferent channels. Then we extract a 138-dimensional feature,
which encodes the mean and standard deviation of the power
percentile in each frequency channel and of the total power,
bandwidth, the most powerful frequency channel, the number

of peaks in power over time, the regularity of power peaks,
the range of the total power over time, and time-localized
frequency percentiles over various frequency ranges.

With the collection of features from training samples in
Table I, we use a binary SVM classifier for speech detection.
During testing, the output of the SVM classifier is stored as
one element of the “voiceProb”, denoted by vv , representing
the probability of detecting speech within a sound segment.

E. Active Window Detection

The Internet and computers are an open gateway to valuable
information for answering exam questions. The authors in [15]
indicate that cheating from the Internet is the most frequent
among e-learners. In [7], they use Blackboards Respondus
Lockdown Browser (RLB) to access the online exam. RLB
is a special browser where the test taker is locked into the
exam and has no way to exit/return, cut/paste, or electronically
manipulate the system. However, some exams might require
Internet access to some specific websites, or perhaps the use
of e-mail or chat functions. Moreover, some test takers might
have saved files and documents on the computer containing
answers to the exam. Therefore, it is critical to keep track of
how many windows are being opened by the test taker.

In our OEP system, we give the user full Internet and
computer access during the exam. We periodically estimate
the number of active windows running in the system, denoted
by vw, obtained from the operational system API. Most of the
time, there should be only one active window, which is the
online exam itself. If vw(t) > 1 at a specific time t during the
exam, we assume the test taker is cheating and a warning
will be displayed on the monitor requesting an immediate
shutdown of the opened window. The probability of cheating
increases as the test taker keeps the unexpected window
opened longer. Since this component relies on the operational
system API, the accuracy of active window detection is 100%.

F. Gaze Estimation

In traditional classroom-based proctoring, the abnormal
head gaze direction and its dynamics over time can be a strong
indicator of potential cheating. For example, typical examples
of abnormal gazes are the test taker’s eyes off the screen for
a long period of time, or his head quickly gazes around a few
times. Although abnormal gaze does not directly constitute
a cheating behavior, it is an important cue to suggest the
potential subsequent cheating actions.

As a classic computer vision problem [19], head gaze esti-
mation is a particularly challenging problem in our application
due to spontaneous head motion of the test taker as well as the
partial occlusion by the eyeglasses and wearcam. To address
this issue, one novelty of our technical approach is to take
advantage of both visual sensors for the enhanced head gaze
estimation. From the wearcam, gaze can be inferred based
on the relative 2D location of the monitor screen. From the
webcam, we may estimate the gaze from the face in the video
frame. By combining the information from both cameras, we
accurately estimate the head gaze of the test taker at a wide
range of yaw and pitch angles.
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Screen detection process: (a) input frame It, (b) gray-scale
image, (c) histogram of (b), (d) converted binary image based on the
threshold, (e) the largest region after connected component analysis,
and (f) estimated screen using the convex hull of the largest region.

We now describe the gaze estimation from the wearcam,
where the core routine is to extract the position of the screen
automatically. We achieve this based on a simple observation
that the pixels of the screen are brighter than other pixels.
Specifically, as seen from Fig. 5(a-d), we first convert the
image to gray-scale, and then to binary by using a proper
threshold, which is set to the mean intensity of the gray-scale
image. Using connected component analysis and only keeping
the largest region, we obtain a candidate region of the screen.
Finally the screen is extracted by computing the convex hull
of the large region.

In the preparation phase, the user is required to be in frontal
view of the webcam, while performing initial authentication.
As a result, it is reasonable to assume that the screen is
near the center of the video frame from the wearcam. We
indeed verify this before completing the preparation phase.
In order to use the screen position to estimate the head gaze
in the exam phase, we calibrate the screen position during the
preparation phase. That is, we estimate the screen position, and
denote its center as cs, width as ws, and height as hs. Note
that calibrating the screen is also very important for other
components, such as the text and phone detection. We also
learn an HSV model of the screen consisting of two thresholds,
an upper and lower bound of possible screen intensity across
the color channels. The bounds are defined by the mean
and standard deviation of each channel in the preparation
phase. Using this model, in the exam phase, an HSV pixel
is converted to foreground (1) in the binary image, if and only
if all the H, S and V intensities fall within the learned bound.

During the exam phase, given a new frame, we use the HSV
model to convert the frame to a binary image and then estimate
the screen position ĉs. We assume the distance between the test
taker and the screen is set to a fixed distance of d. Knowing
d, cs and ĉs, the head pose is calculated by

vg = arctan
‖cs − ĉs‖

d
. (2)

It is obvious that we may only estimate vg using the screen
region when the screen is visible in the wearcam video. That
is, when the head gaze is larger than θg , the screen is out-of-
view from the wearcam video frame. In this case, we use the

second approach of head gaze estimation via the face image
captured by the webcam.

The basic idea for this second approach is similar to the
approach in [3]. At the initial step, we detect a set of strong
corner points on the face [29], and then convert them to 3D
model points by using a sinusoidal model. This model attempts
to map the 2D corner points on a 3D sinusoidal surface, which
is an approximation of the true 3D face surface. Secondly,
we track these points by using the Lucas-Kanade method, and
estimate a rotation matrix based on the changes of the tracking
points. We observe that at small gaze angles, the screen-based
approach is superior to the face-based approach. Therefore,
the face-based approach is only utilized when vg > θg .

For each frame, we store the results of the gaze estimation
into elements of two vectors, “gazeLR” and “gazeUD”, which
are denoted as vg1 and vg2, respectively. The first represents
the yaw estimation, and the second is the pitch estimation.
Since the estimated gaze is an angular value in the range of
[−π2 ,

π
2 ], we normalize them such that vg1 ∈ [−1, 1], where

−1 means the user is looking far left at an angle of −π2 and
1 is towards the far right at π

2 . The same applies to vg2.

G. Phone Detection

Our online exam rule prohibits the use of any type of
mobile phones. Therefore, the presence of a mobile phone in
the testing room can be an indication of potential cheating.
With advancements in mobile phone technology, there are
many ways to cheat from them, such as reading saved notes,
text messaging friends, browsing the Internet, and taking a
snapshot of the exam to share with other test takers.

Phone detection is challenging due to the various sizes,
models and shapes of phones (a tablet could also be considered
a type of phone). Some test takers might have large touch
screens while others might use a button-based flip phones.
Moreover, cheating from a phone is usually accompanied with
various occlusions, such as holding the phone under the desk,
or covering part of the phone with their hand.

To enable this capability, we utilize the video captured
from the wearcam, since it sees what the test taker is seeing.
We perform phone detection based on a similar approach
for screen-based gaze estimation, i.e., searching for pixels
that are brighter than the background pixels. The motivation
of using the screen’s brightness over detecting the phone
object, is that we don’t want to claim there is a phone-based
cheating behavior unless the phone is switched on. By using an
additional constraints on the area of potential local regions to
exclude large (i.e., the monitor) and small (i.e., random noise)
objects, whose thresholds are denoted as τl and τs respectively,
we can estimate a candidate local region for the phones screen.
We chose to represent the estimated phone screen by using the
area of the local region.

Given a video frame from the wearcam, the output of
the phone detection model is stored as one element of the
“phoneProb” vector, denoted by vph. Since the phone detection
module detects phone with an area in the range of [τs, τl],
we normalize them such that vph ∈ [0, 1], representing the
probability of detecting a phone in the frame. Since the vector
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Fig. 6: Segment-based labeling process for a subject. In this example,
the test taker cheats two times during the exam. Note how the window
w shifts at exact increments with an 80% overlap. At each shift, a
segment is formed and assigned a label based on the majority vote
of ground truth labels that falls within w.

vph could be noisy, we apply a median filter of a fixed size
sm, to eliminate the random noise.

H. Cheating Behavior Detection

At this stage, we have the continuous output of the OEP
basic components (i.e., vp,vt,vv ,vg1,vg2,vph,vw,vn), where all
vectors have the same sampling rate, i.e., one element per
frame. We now present how to further analyze these vectors
to detect cheat behaviors. Note that, as seen by the blue dashed
arrows in Fig 2, the latter two vectors vw and vn (i.e., number
of active windows and faces), are used directly to provide a
cheat decision. On the other hand, the remaining six vectors
will be used for extracting high-level features, which will then
be used for learning a SVM classifier to make continuous
decisions on cheat behaviors.

In our algorithm design, we highlight the correlation among
the multiple components, which is extremely valuable in
detecting many cheat behaviors. For instance, it is shown
that when test takers cheat by talking to a person in the test
room, there is a high correlation between the gaze and speech
estimation, which means that the test taker tends to look at the
person during this process. Another example is between the
gaze and text detection, where the subjects tend to turn left or
right to search for a book or some notes. We now explain how
we design these high-level features, and the cheat classifier
used in the OEP system, in the following two subsections.

1) Feature extraction: Since cheating behaviors occur over
a time duration, features need to be defined based on the
temporal window, which is commonly adopted in other be-
havior recognition work [2]. We define a temporal window w
with a fixed length of s seconds for the purpose of feature
extraction. By shifting the window throughout the middle-
level feature vectors with a fixed overlap of l, we generate
multiple segments, which are the units for both training and
testing. Given that we manually label the ground truth (cheat
vs. non-cheat) for all collected videos at each second, we
can convert this labeling to the ground truth label of each
segment. That is, the binary ground truth label of a segment
is determined by the mass majority of per-second ground truth
labels within a segment. The window length s is preferred to
be exact integer seconds, as well as an odd number of seconds
to remove potential equality. The temporal segmentation and
labeling process are illustrated in Fig. 6.

At time t, the high-level features are extracted from all
six vectors within the temporal window wt, and used to
represent the segment. The high-level features of each segment
are composed of the mean µ, standard deviation σ of each
component vector, and the covariance features C.

The covariance feature is an effective visual feature used in
many vision systems, including pedestrian detection [32]. Let
vi be the ith component vector obtained from one segment.
We compute a sfs × 3 matrix Ai = [ vi |v′i| |v′′i | ], where
|v′i|, |v′′i | are the absolute values of the first and second order
derivatives, respectively. Due to the sparsity of vph (i.e., most
elements of the vector are zeros as seen in Fig. 2), we exclude
it from extracting covariance features. Therefore, combining
Ai of all the remaining five vectors yields a sfs × 15 matrix,
A = [A1A2...A5]. To compute the covariance feature, we
apply the following equation:

C =
1

s− 1
(A−mean(A))T (A−mean(A)), (3)

where mean() computes the mean across all rows. Since C is a
15×15 symmetry matrix, by keeping the upper triangular, the
covariance feature of a segment is a 120-dimensional vector.
Finally, each extracted segment has a 132-dimensional feature,
including the µ, σ (6 dimension each obtained from the 6
basic components), and the covariance feature (obtained from
5 basic components excluding the phone detection), to be used
for cheat classification.

2) SVM cheat classifier: As with the OEP components, we
use SVM for classifier learning [5]. For all training videos in
the OEP dataset, the segments with no cheating are considered
as samples of the negative class, and the rest segments are of
the positive class. We divide the positive cheating samples
into three main categories. (a) Any text related cheating from
books, papers and notes is assigned to class 1. (b) Any cheating
involving speech such as asking a person in the room, calling
a friend with a cellphone, or any other speech detected in
the room, is assigned to class 2. (c) Cheating from a phone or
laptop device is assigned to class 3. Class 0 is reserved for the
no cheating segments (the negative class). It is observed that a
multi-class SVM, consisting of a set of three pair-wise binary
classifiers (class 0 vs. 1, 0 vs. 2, etc.), performs better than the
binary classifier (class 0 vs. class 1, 2, 3) During the testing,
we feed the feature of each segment to three classifiers, and
use the average of the three classification scores as the final
measure of the cheating likelihood.

IV. OEP DATABASE COLLECTION

Since there is no publicly available database for online
exams, we carefully designed a protocol for data collection
and labeling. The data collection took place in a room with
regular office furniture. We prepared a mathematics online
exam consisting of several multiple choices and fill in the
blank questions as shown in Fig. 7. During the preparation
phase of the exam, we inform the test taker of a set of rules
they need to obey: (a) No books, notes or any sort of text are
allowed in the room. (b) Phone and laptops are prohibited.
(c) The student has to solve the problems without the help
from any other person. (d) Using the Internet is prohibited.
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Fig. 8: OEP dataset examples illustrating various cheat types. The examples are grouped in pairs showing both webcam and wearcam at a
specific time of the exam. The subjects are cheating from books, notes, papers, smartphones, the Internet, or asking some one in the room.

Fig. 7: Two questions of the mathematics exam that are given to test
takers during data collection.

A total of 24 subjects, all of whom are students at Michigan
State University, participated in the data collection. The first
15 subjects were actors that pretended to be taking the exam.
They were asked to perform cheating behaviors during the
session, without any instructions on what cheating behavior
to perform or how to perform them. One issue with these
subjects is that potentially artificial behaviors are observed
during the acting. Therefore, in order to capture real-world
exam scenarios, we asked nine students to take the real exam,
where their scores were recorded. Knowing that they are not
likely to cheat in the data capturing room, the proctor invokes
the cheating behaviors by talking, walking up to the student,
or handing them a book, etc. The combination of these two
types of subjects enriches the database with various cheat
techniques, as well as the sense of engagement in real exams.

For each of 24 sessions, we collect the audio and two videos
from both cameras as seen in Fig. 2. Each session varied in
length with an average time of 17 minutes. Human annotation
and labeling is performed offline after collecting the data by
viewing the two videos and audio simultaneously. The labeling
of one cheat instance consists of three pieces of information:
the start time, end time and type of cheating. We label 5
different types of cheating behaviors: (1) cheating from a book,
notes or any text found on paper. (2) talking to a person in the
room. (3) using the Internet. (4) asking a friend a question over
the phone. (5) using a phone. The labeling process for every
session is done carefully and required nearly 30∼35 minutes
per session. Fig. 8 illustrates examples of different types of
cheating from various subjects.

Nearly 20% of the total video length has various cheating

34%

50%

10%
3%4%

Cheat type frequency

16%

50%

21%

1%

12%

Total cheat duration per type

 

 

Read text
Ask friend
Search Internet
Call friend
Search Phone

Fig. 9: Statistics of cheating behavior in the OEP dataset. Cheat
types: (1) cheat from book/note/paper, (2) talk in room with a person,
(3) use the Internet, (4) ask a friend over the phone, and (5) use a
phone or other devices.

activities, while the remaining 80% contains normal exam tak-
ing behaviors with no cheating. Even though these percentages
may not depict real life exam scenarios (e.g., 1% cheat vs. 99%
normal), it is necessary for the OEP system to include as many
cheating instances as possible in order to learn and evaluate
a cheat classifier. Fig. 9 shows a full description of the cheat
behaviors in our OEP dataset. The total duration of all types of
cheating is reported to be 7, 235 seconds. The most frequent
cheat behavior is type 2 then type 1, summing up to a total of
84% of all cheat activities. The total number of cheat behaviors
performed by all subjects is equal to 569 instances, varying in
the type and duration of cheating.

The five cheat types defined in our system cover all kinds of
cheating behaviors we could manually identify in the collected
OEP dataset. It is reasonable to assume that they are also
the most common cheating techniques in the real world. Note
that the techniques used within a specific type can vary from
one subject to another, increasing the level of difficulty in
detecting some of the instances. For example, some student
may open a book in front of them to cheat from, while others
hide the book behind the computer screen or below the desk
introducing partial occlusion. Moreover, some students talk in
a room with another person asking for help where both are
visible in one of the cameras, while others might talk with
another student who is not visible in any of the two videos.
Some speak with a low voice (i.e., whispering), while others
speak normally. Many other variations are also present in this
dataset, since we did not constrain the subjects in how to cheat.

Note that the SVM cheat classifier combines cheat type 2
and 4 into one class (i.e., Class 2), since both types involve
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Fig. 10: An example of segment and instance-based metrics.

speech. Moreover, cheat type 3 is not detected by the SVM
cheat classifier, instead we detect it by the active window
detection module which delivers an immediate cheat decision
as seen in Fig. 2.

V. EXPERIMENTAL RESULTS

In this section, we design experiments to answer the follow-
ing questions: 1) How well can the system detect cheating?
2) How do different feature sets affect the performance? 3)
What is the detectability of each cheat type? 4) Is there
any correlation between the six components of the OEP
system? 5) What is the system efficiency at a component
and system level? We now discuss different aspects of our
experiments. We start by explaining the evaluation procedure.
Then we analyze the individual performance for a couple of
basic components of our OEP system. After that we test the
performance of the entire OEP system. Finally, we describe
the OEP system efficiency.

A. Performance Evaluation

We define two metrics to evaluate the OEP system, a
segment-based metric and an instance-based metric, with an
example in Fig. 10. The segment-based metric evaluates the
estimated classifier decisions at the segment level, which is
the most straightforward measurement of the classification
accuracy. A cheating instance is defined for the entire duration
of one continuous cheating behavior, regardless of how long it
is. The instance-based metric evaluates the detection accuracy
based on the unit of cheating instance. Therefore, it is the
“perceived” system accuracy of the user, and can answer
questions such as “if a test taker cheats 10 times, how many
times can OEP detect?” Both segment- and instance-based
metrics are represented by True Detection Rate (TDR) and
False Alarm Rate (FAR), but computed in different ways.

a) Segment-based metric: For segment-based metric,
TDR is calculated by:

TDR =

∑
i # detected cheating segments of subject i∑

i # groundtruth cheating segments of subject i
,

(4)

Kernel Dim= 50 Dim= 100 Dim= 200

linear 86.85% 85.63% 88.09%
quadratic polynomial 73.55% 73.61% 74.53%

cubic polynomial 78.61% 81.91% 74.50%
raidal basis function 93.38% 93.43% 94.25%

sigmoid 81.51% 83.94% 82.74%

TABLE II: Accuracy of classifying the validation data using SVM
with different kernel functions and PCA dimensions.

γ Dim= 50 Dim= 100 Dim= 200

0.1 83.94% 85.21% 84.73%
1 92.63% 93.82% 93.02%
5 94.23% 92.18% 93.38%
10 88.90% 90.12% 88.88%

TABLE III: Accuracy of classifying the validation data using RBF
kernel with different γ and PCA dimensions.

where i denotes the test subject ID. Since it is also important
to not claim that a test taker is cheating when he/she is not,
we compute FAR by:

FAR =

∑
i # of false cheat segments of subject i∑
i # of cheat-free segments of subject i

. (5)

b) Instance-based metric: As illustrated in Fig. 10, to
compute the instance-based metric, we filter the segment-based
classification results in the following way. If more than 50%
of the segments, regardless of their relative locations, within
a cheating instance are correctly classified as cheating, this is
a correctly detected instance. Otherwise it is a miss detection
in the instance level. The TDR in the instance-based metric is
defined as:

TDR =

∑
i # detected cheating instances of subject i∑

i # cheating instances of subject i
. (6)

To evaluate false alarm in the instance-based metric, as long
as the number of consecutively detected false cheat segments is
over sf , we define this as a falsely detected instance, regardless
of its length. Since the instances within the cheat-free portion
of the session is not well defined, we compute FAR w.r.t. the
total length (in minutes) of cheat-free videos. Finally, the FAR
in the instance-based metric is defined as,

FAR =

∑
i # of false cheat instances of subject i∑
i # of cheat-free minutes of subject i

. (7)

B. Basic Component Analysis

In this section we demonstrate the accuracy of the two
individual components, text and speech detection, which are
the most important ones among all six components. The other
component are evaluated along with the entire OEP system
in the remaining sections. First of all, we set the parameters
used in the six basic components as the following: τ0 = 3,
τv = 0.9, k = 1, d = 0.6 meters, θg = π

4 , τl = 15, 000,
τs = 5, 000 and sm = 50. All experimental results reported
in this section are evaluated with a 5-fold cross validation on
the positive and negative training samples as seen in Fig. 4
for text, and Table I for speech.
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Ls 0.5s 1s 2s
Accuracy 95.99% 98.14% 99.72%

TABLE IV: Accuracy of classifying audio samples with different
Ls lengths.

Kernel Accuracy
linear 94.37%

quadratic polynomial 95.68%
cubic polynomial 95.99%

raidal basis function 60.65%
sigmoid 68.17%

TABLE V: Accuracy of classifying audio samples using SVM with
different kernel functions.

1) Text detection analysis: In text detection, the key pa-
rameters are the PCA dimensionality and the type of SVM
kernel. Different choices of the parameters will affect the text
detection performance. Using a two-class SVM [5], Table II
illustrates the detection performance on the validation dataset,
with different PCA dimension and types of SVM kernel.
Note that reducing dimension does not significantly reduce
the detection performance. From this table, we see that the
radial basis function (RBF) performs better than other kernels.
Since the RBF kernel relies on a good choice of γ, we tested
the detection performance using RBF kernel with different γ
values as seen in Table III. It appears that using the SVM with
RBF kernel (γ = 5) performs best on the validation dataset,
where the feature dimension has been reduced to 50. We use
these specific parameters in our final OEP system.

2) Speech detection analysis: We first analyze the speech
detection performance with different acoustic segment lengths
Ls. The testing results in Table IV illustrates that the larger the
segment size, the higher accuracy can be achieved. The reason
is that the longer audio segment carries more information
about speech. However, in a real-world situation the longer
the segments are, the more likely the short speech instances
will miss detection. To balance between these two cases, we
choose the fixed duration Ls as 500ms with a 100ms shift.

In order to choose the best kernel, we train the SVM
classifiers using different kernels, and Table V gives the testing
accuracy. From this table, we can see that the cubic polynomial
function performs best over other kernels. Moreover, we test
the performance of SVM using cubic polynomial kernel with
different γ values, and it appears γ = 0.0072 generates the
highest accuracy on the testing sound samples.

C. OEP System Analysis

a) Experimental setup: All experiments are based on
partitioning the dataset into two equal folds in the subject
space for training and testing, while keeping the numbers
of real and acting test takers equal between the two folds.
This partition is repeated in three trials, while maintaining the
distribution of real vs. acting subjects. All reported results in
the remaining section are based on the average of three trials.
We set the window size s to 5 seconds, and the window shifts
with an overlap of 1 second, which corresponds to an 80%
overlap between consecutive segments. We set sf to 3 for
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Fig. 11: Comparing the importance of different correlation of the
five OEP components.

computing the FAR in the instance-based metric. The multi-
class SVM of the cheat classifier uses a linear kernel with
the cost set to 10 [5], and all other parameters are set to the
default values by LIBSVM.

b) Feature analysis: We start by analyzing the charac-
teristics of the covariance features in the context of cheat
classification performance. First of all, we attempt to compare
two different methods for computing the covariance features.
The first method is to compute C as in Section III-H1. In
the second method, we compute the 3 × 3 covariance matrix
from each OEP component independently, and extract a 6-
dimensional covariance feature due to symmetry. Concatenat-
ing that of all five components (i.e., excluding vph) results
with a 30-dimensional covariance feature C̄. The difference
between C and C̄, is that C has the ability to highlight, if
any, the correlation across the five OEP components, whereas
C̄ only finds the correlation within the statistics of each
component. When comparing two types of covariance features
in cheat classification, we observe that the first one, C,
achieves higher classification accuracy, which indicates that
incorporating cross-component correlation in the high-level
feature benefits cheat classification.

The covariance feature C has a total of 120 dimensions.
Within this large feature pool, which individual features are
most relevant (or important) to the cheat classification task? To
answer this question, we apply an AdaBoost feature selection
technique [33] to select the most discriminative features among
all elements of C. Given the training data in each of three
trials, Adaboost selects the top 40 features from the 120
features of C. By repeating this for all three trials, we count
how many times a feature has been selected, and normalize the
counts by subtracting the minimum count and dividing with
the difference of the maximum and minimum counts. This
leads to the importance of correlation map in Fig. 11.

Some important observations can be made: (1) The voice
detection component has an important role in detecting cheat
behaviors when combined with the gaze estimation. This
means when a test taker cheats by asking a friend in the room,
or by talking over the phone, he tends to change his head
gaze direction. The same applies for the text detection and
gaze components. (2) The inner-correlation of the component
is observed as seen on the diagonal of Fig. 11, where the
text, speech and PSR vectors have high importance in the
OEP system. The importance of the face PSR component is
also relatively high, which is understandable, because for a
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Fig. 12: Segment-based performance compar-
ison via Binary SVM vs. Multi-class SVM.
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various window sizes.
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Fig. 14: Instance-based performance evalua-
tion.

Cheating type Detection rate FAR distribution
Text detection 85.8% 50.8%

Speech detection 89.3% 43.9%
Phone detection 100.0% 5.3%

TABLE VI: Error analysis of the OEP system at 2% FAR.

test taker to cheat, this normally requires him to stop looking
directly to the screen (i.e., webcam), and hence the PSR value
changes accordingly. (3) A large number of correlation across
components tend to have no importance, and therefore do not
provide useful information in detecting cheat behaviors, such
as facePSR & voiceProb and voiceProb & textProb.

c) OEP system results: In our cheat detection classifier,
we observe that using a multi-class SVM achieves a higher
performance compared to the two-class SVM, as shown in
Fig 12. This is partly because the positive class (i.e., all cheat-
ing behaviors) contains extremely diverse types of cheating,
varying from reading text to verbally asking through speech
events, which implies huge variations in the feature space.
Hence, it is challenging to find a single hyperplane to best
discriminate the negative class from the positive class. In
contrast, using a four-class SVM defines multiple hyperplanes
to better separate the four classes locally, which results in
better overall cheating vs. non-cheating classification.

We further explore the temporal segments by changing the
window size s as shown in Fig. 13. Here s is assigned to be
3, 5, or 7 seconds. We avoid selecting s > 7, because the
majority of cheat behaviors tend to be short in duration. Note
that the best performance is achieved when s = 5 seconds,
with a TDR of 0.87± 0.03 at a FAR of 0.02.

Using the experimental setup based on the best parameters,
we evaluate our system using the instance-based metric. The
result is illustrated in Fig. 14. We see that our OEP system is
able to detect cheating at an instance-based TDR of 0.80 ±
0.04 and a FAR of 0.2 cheats per minute. This means that on
average only one false alarm occurs per five minutes of the
normal cheat-free exam.

Given the best results in the segment-based metric of
Fig. 13, we are interested in what types of cheating behavior
constitute the missing detection error and false alarm error.
Based on the ground truth labels of the segments, we can cat-
egorize each wrongly classified segment (either miss detected
one or false alarm one) into one of the three cheat classes,
and illustrate the results in Table VI. We realize that speech

detection performs better than text detection at a TDR equal
to 89.3% with an FAR set to 2%. This is expected: detecting
text from the wearcam is very challenging due to resolution,
lighting and perspective distortion. It is also found that the
number of false alarms related to text are also higher than
speech. The phone detection has shown to work accurately for
detecting the cheat instances when test takers use the phone.
Part of the reason is the limited phone-based cheat samples in
the database - only 4% of cheat instances (23 cases for training
and testing) as seen from Fig. 9. On the other hand, introducing
the phone detection module to the system is accompanied with
false alarms equal to 5.3% of all FAR. We show the entire
classification results of two subjects in Fig. 15 and some of
the system failure cases in Fig. 16.

D. Performance of Human Proctoring

Human proctoring is the most common approach of vali-
dating online exams nowadays, by monitoring the test taker
visually and acoustically via a webcam. In order to access its
performance and contrast with our OEP system, we conduct
an experiment imitating a human proctoring system, similar
to the services offered by ProctorU. All testing videos used
in our system were provided to three different people with
experience in teaching, along with a graphical user interface
(GUI) designed to manually record the cheating instances, as
shown in Fig. 17. The GUI contained only one button which
toggles between Cheat and Stopped cheating when clicked.
The proctor had the ability to run one or two videos at the
same time to imitate a real proctoring environment where one
proctor usually “watches” multiple tests simultaneously. The
proctors were not given any instructions other than to click
the cheat button at the beginning of a cheat behavior, and to
click again at the end of that same behavior.

After collecting the results of the three proctors, we compare
them with the results of the OEP system individually, as well
as jointly in two different schemes: (a) the majority of the
proctors decision (i.e., two out of three need to agree), and
(b) the intersection of the proctors decision (i.e., all three
need to agree). Table VII shows the total cheat time labeled
by the proctors, the segment TDR and FAR, and the instance
TDR and FAR. Based on the ground truth labeling, the testing
videos contain cheating behaviors for a total time of 3, 199
seconds. It is clear that the human proctors reported cheating
durations much larger than the actual cheat time, which is
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Fig. 15: Results of Subject 10 (top) and Subject 16 (bottom) based on the chosen threshold that produces a segment-based FAR of 0.2.
Subject 10 cheats 15 times during the exam, while 2 of them are not detected. Subject 16 cheats 10 times, where 3 of them are not detected
along with 1 false alarm. Best viewed in color.

Fig. 16: Failure examples of the OEP system, showing the frames from both of the webcam and wearcam along with the estimated cheat
behavior probability for a specific duration in the test taking illustrated by the x-axis. (a, b, c) represent cases where the OEP struggles to
recognize the cheat activity of type 1, 2, and 4, respectively. (d, e, f) are false alarms where the system claims the subjects are cheating, but
the ground truth reflects otherwise.

Fig. 17: The GUI for human proctoring used by three proctors.

reflected negatively in the FAR measurements. Part of the
reason is the slow reaction of humans towards switching on/off
the cheat duration. Typically, ∼2 seconds are needed before
confirming that the student has started/ended the cheating
behavior. Furthermore, human proctors lose their attention
span in some parts of the proctoring session, which leads
to lower TDR. Note that the OEP results are chosen at

Segment metric Instance metric
Results of Cheat time (s) TDR FAR TDR FAR
Proctor 1 4,567 0.86 0.13 0.88 0.90
Proctor 2 4,728 0.85 0.14 0.83 0.69
Proctor 3 5,504 0.71 0.22 0.72 0.77
Majority 4,650 0.87 0.13 0.85 0.77

Intersection 2,758 0.60 0.06 0.58 0.33
OEP 2,958 0.87 0.02 0.85 0.42

TABLE VII: Comparison of human proctoring and OEP system.

an operation point where the TDR is the most similar to
the human performance of “Majority”, which appears to be
the best among all human performance. In general, when
achieving the same TDR, the OEP system can maintain a
lower FAR than the human proctors. We recognize that, in this
comparison, the precise onset and offset locations of a cheating
duration matter, which may not be the case in a real-world
scenario and that would change the comparison accordingly.
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E. System Efficiency

The six OEP basic components are all implemented in C++.
The high-level feature extraction and cheat classification are
implemented in Matlab. Table VIII shows the system efficiency
break down in frame per second (FPS), while the system runs
on a personal desktop computer with Windows 8 (Intel i5
CPU at 3.0 GHz with 8 GB RAM). It can be observed that
the computation cost of Stage 2 cheat detection is negligible
compared to that of the basic components. Among the six basic
components, text detection is the slowest one which requires
238 ms per frame. Based on these costs, if a test taker takes an
exam for 1 minute, our OEP system would require a total of
∼6 minutes to finish processing the videos from two cameras
along with the audio. Note that this 6X slower-than-real-time
speed is based on the assumption that all six basic components
process every frame in 25 FPS videos. In reality, it is very
likely that we may process at a lower frame rate, yet still
maintain similar detection performance, since for example, the
test taker would need a few seconds in text-based cheating.

VI. DISCUSSION

The main contribution of this work is to present a compre-
hensive framework for online exam proctoring. While we have
achieved good performance in our evaluation, our framework
can certainly be improved in a number of ways. For the basic
components, we can either apply more advanced algorithms
for each component, such as the deep learning-based feature
representation, typing-based continuous authentication [25],
[26], face alignment-based pose estimation [12], [18], [19],
upper body alignment [20], and model personalization [6]. We
may also expand the array of basic components, to include
additional components such as pen detection. For cheat clas-
sification, we can explore temporal-spatial dynamic features,
similar to the work in video-based activity recognition [36].
Moreover, the system efficiency can also be improved while
maintaining a high accuracy in recognizing cheat events as
suggested in [11], by selecting more suitable features and
classifiers, as well as selecting a smaller number of frames
instead of utilizing all frames.

We recognize that there always exists a possibility that
concealed cheating activities might happen outside the fields
of view of both cameras. To remedy this, our system plans
to generate random commands, such as asking the test taker
to look around or under the desk to check the surrounding
environment of exam. To detect whether the test taker has
tampered with the sensors, once in a while our system can
display a simple icon on the computer screen to validate that
the wearcam can “see” it, or play a quick sound clip to validate
that the microphone can “hear” it. The randomness of such
commands and intervention will likely make our system more
robust againts deliberate cheating behavior.

Note that the definition of cheating behavior depends on the
context of the exam, such as oral exam, open-book exam, etc.
Our proposed hybrid two-stage algorithm enables the user to
take in consideration such context of the exam. The six basic
components extracted in the first stage can be considered as
system building blocks, which are reconfigurable based on

Stage 1- Basic
component

FPS

User Verification 10
Text detection 4

Speech detection 25
Window detection 1,000
Gaze estimation 175
Phone detection 37

Stage 2- Cheat
detection per seg.

FPS

Features extraction 1,816
Cheat classification 932

TABLE VIII: Efficiency of basic components, feature extraction and
classification of the OEP system.

the context of the exam and the test taker’s preference. For
example, if the exam was an open-book exam, the OEP system
should exclude the text detection component. Some other types
of exam might require the test taker to talk such as oral
exams, and hence removing the speech detection component
is necessary.

Even with all the aforementioned system enhancements, it
is possible that the automatic OEP system might not achieve
perfect performance (i.e., detecting all cheating behaviors with
no false alarm). We note that, even in traditional classroom
proctoring, it is likely that the proctor will fail to detect some
cheating behaviors, due to either the attention span of the
proctor, or highly concealed action. Therefore, as long as OEP
can capture the majority of cheating behaviors with reasonably
small false alarm, it will be a useful contribution to online
education. Furthermore, we may also allow humans to man-
ually inspect the instances with high probability of cheating
from our system. For example, setting a proper threshold in
Fig. 15 detects all such instances. This manual inspection helps
to verify the true detections, as well as suppress the false
alarms. Hence, the combination of using OEP to detect likely
cheating instances within the entire session, and the manual
inspection on a very small subset of data, can achieve an
excellent trade-off between system accuracy and cost. Finally,
as visual analysis technology progresses, it is obvious that the
workload of manual inspection will become less and less.

VII. CONCLUSIONS

This paper presents a multimedia analytics system for online
exam proctoring, which aims to maintain academic integrity
in e-learning. The system is affordable and convenient to use
from the text taker’s perspective, since it only requires to
have two inexpensive cameras and a microphone. With the
captured videos and audio, we extract low-level features from
six basic components: user verification, text detection, speech
detection, active window detection, gaze estimation and phone
detection. These features are then processed in a temporal
window to acquire high-level features, and then are used for
cheat detection. Finally, with the collected database of 24
test takers representing real-world behaviors in online exam,
we demonstrate the capabilities of the system, with nearly
87% segment-based detection rate across all types of cheating
behaviors at a fixed FAR of 2%. These promising results
warrant further research on this important behavior recognition
problem and its educational application.
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