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Cercospora leaf spot (CLS) is one of the most serious diseases of sugar beet worldwide, and if uncon-
trolled, causes nearly complete defoliation and loss of revenue for beet growers. The beet sugar industry
continuously seeks CLS-resistant sugar beet cultivars as one strategy to combat this disease. Normally
human experts manually observe and rate the resistance of a large variety of sugar beet plants over a
period of a few months. Unfortunately, this procedure is laborious and the labels vary from one expert to
another resulting in disagreements on the level of resistance. Therefore, we propose a novel computer
vision system, CLS Rater, to automatically and accurately rate plant images in the real field to the “USDA
scale” of 0–10. Given a set of plant images captured by a tractor-mounted camera, CLS Rater extracts
multi-scale superpixels, where in each scale a novel Histogram of Importances feature encodes both the
within-superpixel local and across-superpixel global appearance variations. These features at different
superpixel scales are then fused for learning a regressor that estimates the rating for each plant image.
We further address the issue of the noisy labels by experts in the field, and propose a method to enhance
the performance of the CLS Rater by automatically calibrating the experts ratings to ensure consistency.
We test our system on the field data collected from two years over a two-month period for each year,
under different lighting and weather conditions. Experimental results show that both the CLS Rater and
the enhanced CLS Rater to be highly consistent with the rating errors of 0.65 and 0.59 respectively, which
demonstrates a higher consistency than the rating standard deviation of 1.31 by human experts.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

More than 50% of the total U.S. sugar production is from sugar
beets [1]. However, disease affects the productivity of sugar beet,
and Cercospora leaf spot (CLS) is one of the more serious diseases
in that it infects healthy leaves, causes a toxin-mediated necrosis
of leaf tissues that disrupts photosynthesis, and ultimately leads to
both real sucrose loss and unrealized income for growers. This
disease accounts for a significant reduction in sucrose production
from sugar beet roots while increasing impurities concentration,
which results in higher operation costs [2]. Given the high cost and
environmental effect on applying fungicide methods to overcome
sugar beet diseases, planting resistant cultivars using advanced
precision farming techniques is the most common and practical
,
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method to battle this disease [3]. To identify resistant varieties,
once every few days over a course of a few months, the domain
experts walk through the field, visually observe the diseased
plants, and rate the level of cultivars disease severity using the
rating system adopted by U.S. Department of Agriculture (USDA),
designated here as the “USDA scale” [4]. However, this manual
rating system has three critical drawbacks. It is accompanied with
high variations where multiple experts may have different ratings
for the same plant, laborious where it requires large amounts of
time from experts for frequent and large-scale rating, and rela-
tively insensitive where the human eye is not sensitive enough to
rapidly differentiate subtle variation of leaf appearances. There-
fore, an improved rating system addressing these drawbacks is
highly desired.

Considering the popularity and ever-reducing cost of cameras,
a computer vision-based approach can be an excellent choice for
a rating systemwhere the images of plants are analyzed and rated
in an automated, consistent, and efficient manner. Unfortunately,
the agricultural industry appears to lack such types of commercial
ancing plant-level disease rating systems in real fields, Pattern
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systems. In the research community, most of the prior work
focuses only on detecting or classifying CLS from a magnified and
well-controlled view of leaf images [5–8]. Although such leaf-
level approaches simplify the classification problem, they are
hard to adopt in practice due to the stringent requirements on
image acquisition. In addition, single leaf ratings have been
shown to be less reliable for predicting plant damage than whole
plant ratings [9].

Alternatively, plant-level images can be more conveniently
acquired in real fields via a fly-over UAV or a drive-through tractor
(Fig. 1). However, automatic rating on plant-level images is chal-
lenging, as illustrated in Fig. 2. The varying light conditions in
different weather contribute to a large amount of appearance
variations in the images. Dark shadows tend to hide the details
making it difficult to analyze the appearance patterns of diseased
spots. In the higher ratings of CLS, the dead plants are often dif-
ficult to discern from the soil background and hence not confusing
them with soil is challenging. Similarly the specular reflection
from the sun in healthy leaves displays a yellowish color that is
normally present around the diseased leaves, increasing the
potential of confusion.

In order to fulfill the application needs and address the tech-
nical challenges, we propose a novel system, CLS Rater, for auto-
matic rating of CLS disease in plant-level images captured by a
tractor-mounted camera. Notably, this application demands a
global rating estimate of a plant image by analyzing diverse
Fig. 1. A camera mounted to a field tractor records the plant videos. CLS Rater
performs automated analysis and assigns a rating of “USDA scale” to each
video frame.

Fig. 2. Appearance variations of real-world plant images in the field: (a) glow effect vs. sh
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appearance patterns of disease in its local regions. We tackle this
challenge by our novel technical contribution of superpixel-based
Histogram of Importances (HoI) features that describe the local
patterns of each superpixel aggregated across the global image
level. We then utilize these features for learning image-level
regression models. Although superpixels are frequently used in
image segmentation [10–12], they have not been explicitly used to
learn image-level regression models. Furthermore, depending on
the rating of a plant, the distinctive regions of diseased leaves can
have diverse sizes, from a tiny spot to an extensive area of dead
leaves. Hence, the superpixels extraction is conducted at multiple
scales, ranging from hundreds to thousands of superpixels, and the
proposed HoI feature is extracted at each scale. Finally, the features
from multiple scales are fused, from which a regressor is learned
based on a set of images and their manual rating (or label) in
USDA scale.

Using our novel CLS Rater, we have the capability to address
some of the existing drawbacks (i.e., laborious and the high var-
iation in labels), simply by driving the tractor through the field and
automatically rating every plant with the USDA scale. Unfortu-
nately, the drawback of insensitive has not been well tackled since
the manual ratings, on which CLS Rater is trained, are generated
using a rating scale designed for low sensitivity. Furthermore, the
manual ratings are known to be noisy, as evidenced by the large
variations among multiple experts. For example, in the ratings
from three experts over a two-month period, the level of dis-
agreement in ratings is considerably high with a standard devia-
tion of 1.31. Hence, it is reasonable to conclude that the CLS Rater
learned from the noisy ground truth still desires further
improvement. Finally, we hypothesize that enhancing the manual
ratings of training samples is able to produce a more consistent
and accurate CLS Rater. After applying the label enhancement
module (LEM) to the training set, an enhanced CLS Rater can be
trained with the new ratings.

Extensive experiments are conducted by using the video data
captured in the real field under different outdoor weather condi-
tions, for two consecutive years (2013 and 2014). First, we test the
CLS Rater based on the ground truth manual ratings on the 2013
dataset. Experimental results show that our system is more con-
sistent compared to the human rating. CLS Rater can predict rat-
ings with an average rating error of 0.65. Furthermore, when
adow, (b) dark shadows, (c) dead plants on top of the soil, and (d) variations in soil.
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applying the LEM, the enhanced CLS Rater can reduce the error to
0.59. Finally, cross-year experiments are performed by testing the
CLS Rater learned in 2013 on the unseen data in 2014.

A preliminary version of this work was published in the
International Conference on Pattern Recognition 2014 [13]. We
have extended it in a number of ways: (i) developed the LEM to
address the issue of noisy labels; (ii) further reduced the rating
error of CLS Rater; and (iii) conducted experiments on real-world
data of two consecutive years.

In summary, this paper makes four main contributions:
� We design a practical computer vision system that con-

veniently consumes plant-level images of a real field and auto-
matically rates the CLS resistance in USDA scale.

� We propose a novel HoI feature over the multi-scale super-
pixels representation, and demonstrate its effectiveness in the
regressor learning.

� We address the problem of noisy labels by proposing an LEM,
and experimentally show the superior performance of applying
LEM over the one using the noisy labels obtained from the experts
in this field.

� We collect a Real-World Sugar Beet Database with various
degrees of CLS disease and the associated manual ratings in the
USDA scale, over a two-month period in both 2013 and 2014. This
dataset is publicly available to the research community.1
2. Prior work

Considering the contributions of our work, we review relevant
prior work in three areas, disease rating, feature representation,
and noisy label handling.

In the work of Hanson et al. [14], a wide variety of sugar beet
cultivars are grown and manually rated for evaluating their
resistance or susceptibility to CLS. There have been a number of
prior work focusing on detecting or classifying CLS severity in
sugar beets [5–8,15,40]. These approaches utilize magnified leaf-
level images to detect the diseased segments and classify a leaf as
diseased or healthy. Such approaches address a less challenging
problem than ours due to the use of leaf-level images and a two-
class classification task, while we perform regression from plant-
level images. Furthermore, these approaches are hard to adopt in
practice since it is inconvenient to acquire leaf-level detail of each
plant in a large field. For instance, in [5], authors classify different
diseases in sugar beet leaves, where the plants are grown under
controlled laboratory conditions. In [6], the authors use leaf ima-
ges to differentiate a CLS-symptomatic leaf from a healthy one by
an SVM classifier. Similarly, [7,8] also use leaf images and utilize a
threshold-based strategy to monitor the diseased part of a leaf.
Moreover in [15,40], the authors propose an algorithm to con-
tinuously monitor the disease development under real field con-
ditions. This method is applied on a single leaf scale for disease
observation, which requires tracking and aligning the same exact
leaf across several days. In contrast, we collect plant-level images
in a real field under diverse weather conditions, which exposes
our system to all kinds of real-world challenges. Further, our sys-
tem learns a regression model that predicts the continuous
severity of CLS disease. To the best of our knowledge, this is the
first study to utilize the plant-level real field images and auto-
matically predict the fine-grained severity of a disease.

Since our feature representation builds upon the superpixel, we
provide a brief overview of the related work in superpixels. With
time, superpixel-based methods are becoming more advanced. For
example, authors of [16] discuss how superpixels resulting from
1 http://www.cse.msu.edu/liuxm/precisionAgriculture.html
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different techniques can be combined to improve image segmen-
tation. Similarly, various studies utilize superpixels for classifying
local image segments [17]. In [18], authors use a multi-scale
superpixel classification approach for tumor segmentation. Fur-
thermore, superpixels have been utilized in various other appli-
cations as shown in [10–12]. Note that in our study, CLS rating
needs to be conducted globally for an entire image, while super-
pixels only capture local characteristics of an image. Hence, to fill
in the gap, we need to address how the local characteristics of
superpixels can be summarized as an image-level representation,
which unfortunately has not been explicitly studied before and is
one novelty of our technical approach.

Label noise is a well-studied problem over the last few decades,
due to its negative impact on any pattern recognition problem.
Having noisy labels will affect the classification model, increase
the complexity, and ultimately reduce the accuracy [19]. Some
researchers attempt to learn models that are robust when training
data has label noise [20,21]. An alternative approach is to detect
noisy labels, correct, or remove them [22,23,41]. A third type of
approach is to use classification filtering as a preprocessing step
[24–28]. For example, Adaboost is used to filter mislabeled sam-
ples in [24], by eliminating a group of the samples with the highest
weights. However, most prior work eliminates mislabeled data
instead of correcting them, which reduces the number of samples.
Also, the majority of them use synthetic data with injected noise
[19], rather than real world data as in our case. It is worthy to note
that the noisy CLS rating is not caused by mistakenly assigning an
incorrect class label, instead it is due to the difficult nature of
assigning disease ratings that may vary from one person to
another, or one field to another. The limited information provided
from the USDA scale of each rating class is one reason for this
problem. This task is highly subjective based on how the expert
interprets the different ratings from 0 to 10. For example, in our
dataset, the standard deviation of CLS ratings among multiple
experts can be as high as 1.31. Therefore, given the fact that label
noise is presented in almost all samples in our dataset, it is
important to be able to correct or enhance the labels, which is the
main goal of our LEM.
3. Proposed approach of CLS rater

The input data to the proposed CLS Rater is the plant-level
imagery captured by a face-down camera mounted on either a fly-
over UAV or a horizontal pole on a regular field tractor. Specifically
in this paper we adopt the latter, as illustrated in Fig. 1. Given the
captured plant images, we use a superpixel-based approach to
extract features at a pre-defined scale, e.g.,M superpixels, that best
describe the local characteristics. The superpixel is well suited for
our given problem, because it concisely and efficiently represents
local appearances at a diverse range of scales by grouping pixels
with locally uniform color and texture. After superpixel extraction,
there are many types of features to represent a local region. We
focus on color and texture based feature representation. A D-dim
feature vector, e.g., a color and texture histogram, is extracted to
represent the local appearance of a superpixel. Given the M � D
feature matrix extracted from all superpixels of an image, we
describe the appearance variations across all superpixels via our
superpixel-based HoI features, by computing a T-dim histogram
for each column of this matrix. This results in a DT-dim vector,
where each element describes the distribution of relative impor-
tance of one feature, e.g., one representative color, among all
individual superpixels.

Color features are the most important in this problem, since it
is the core indication of CLS severity on the leaves of the plant. A
CLS-symptomatic plant exhibits more yellow color in comparison
ancing plant-level disease rating systems in real fields, Pattern
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to a healthy one, where the amount of yellow indicates the disease
severity. When a plant is going through different stages of CLS
disease development, the color as well as the amount of healthy
leaf, diseased leaf tissue, and visible soil regions in plant images
are changing accordingly. Therefore, color can be very useful in
discriminating these three types of regions and further con-
tributing substantially to the prediction of the rating. Similarly,
texture also exhibits distinct patterns on these different regions.
Healthy leaves can be described to be smoother, where diseased
ones can be characterized to have dried and rough surfaces. Thus,
texture is also a good candidate to discriminate between healthy
and non-healthy plants.

Similar to any learning-based computer vision system, CLS
Rater has a training stage and a testing stage. During the training
stage, a regressor is learned from a set of plant images and their
ratings in “USDA scale”, with the goal that the predicted rating
from the regressor is as close to the manually labeled rating as
possible. While in the testing stage, the learned regressor is
applied to an unseen plant image to automatically predict its
disease rating. As shown in Fig. 3, the training stage includes three
modules: codebook generation module (CGM), rating estimation
module (REM) and label enhancement module (LEM), while the
testing stage only includes the REM.

The goal of CGM is to model the representative colors in three
different types of regions, i.e., healthy, soil and disease. In CGM, we
manually label diverse sets of superpixels into each of the three
regions, to which k-means clustering is applied independently for
generating the codewords of these three regions. In REM, super-
pixels are extracted from a set of images at four scales, where at
each scale a novel feature representation is used to describe both
the local and global image characteristics. Features at all scales are
then fused and a regressor is learned from the selected features.
Processing in the testing stage is the same as REM except that it
takes only one image as input. In LEM, we perform label
enhancement on the manual ratings obtained from the experts in
the field in order to reduce the amount of label noise and better
distinguish all possible ratings. This is accomplished by iteratively
adjusting the existing rating of each sample, with the goal of
achieving the maximum separation among the training samples of
different ratings in the feature space. The separation is measured
using the multiclass Linear Discriminant Analysis (LDA), which
explicitly models the linear separability among the data of mul-
tiple classes. We describe the key components of the training stage
Please cite this article as: Y. Atoum, et al., On developing and enh
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starting from superpixel extraction, to a detailed explanation for
all three modules as follows.

3.1. Superpixel extraction

CLS in its early stages appears as very small spots located on the
leaves of the sugar beet plant. As the disease progresses to higher
levels, the spots increase in number and coalesce, and the diseased
areas change in color. Therefore, the disease segments show large
variations of scales ranging from a tiny spot to a large segment
depending on the level of CLS severity. Instead of developing an
approach to detect spots with varying sizes, as examples in cell
[42,43] and fish feed [44], we adopt a middle-level representation,
superpixels. A superpixel is a local segment in an image containing
a group of neighboring pixels with similar appearance. Normally a
scale is specified so that a pre-determined number M of super-
pixels can be generated for one image. To capture the local char-
acteristics of diseased spots at all rating levels, we generate
superpixels SM ¼ fs1; s2;…; sMg of an image at four different scales
where M ¼ f500;1500;2500;3500g. Using the standard imple-
mentation of [29], we observe that superpixels at each scale cover
local image characteristics in a unique way, as shown in the
zoomed-in views of the smallest and largest scales in Fig. 4. For
example, small sized superpixels, obtained with a large M, can
completely fit to a small diseased spot developed in the early CLS
stage. Although a larger sized superpixel cannot restrict its
boundary to a small segment present in low rating images, it
covers the surrounding of such a small spot and hence provides
useful neighborhood contextual information, as indicated by the
two parallel arrows in Fig. 4. On the other hand, in high rating
images, larger superpixels can cover an entire large area of coa-
lesced spots and provide a more confident indication of the
severity of CLS (the leftmost arrow in Fig. 4). Combining all the
features obtained from superpixels of various M scales will effec-
tively describe all rating levels of the disease.

3.2. Codebook generation module

For an arbitrary image, the color of pixels may not have a priori
distribution. However for domain-specific images such as sugar
beet plant images, it is safe to assume that a distribution of pixel
color exists and can be learned for efficient feature representation.
Therefore, motivated by the Bag of Words (BoW) approaches [30],
ancing plant-level disease rating systems in real fields, Pattern
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we first learn a color codebook to estimate the representative
colors (codewords) in the plant images as illustrated in Fig. 3, so
that they can be used later for feature representation. From our
dataset we manually select a diverse set of B¼33 images with
various severities of CLS. The images were selected uniformly
across several days throughout the sugar beet season, capturing all
ratings of CLS disease, and all variations in lighting and weather
conditions. For each image, Ii, superpixels at multiple scales fSMi g
are extracted. To facilitate the labeling for CGM, we develop a GUI
where the superpixels SMi of image Ii are displayed on the screen
and a user may select superpixels belonging to healthy, diseased or
soil regions via mouse clicks. The selected subsets are denoted as
Shi , S

e
i , and Ssi respectively. We perform this step for all B images to

form SH ¼ fSh1; Sh2;…; ShBg, SE ¼ fSe1; Se2;…; SeBg and SS ¼ fSs1; Ss2;…; SsBg.
We collect 150 superpixels for each of the three categories. This
superpixel selection procedure is performed at two scales only:
fS3500i g containing smaller superpixels for selecting diseased spots,
and fS500i g for healthy plants and soil.

The RGB pixel values of all pixels within the superpixels of SH ,
SE , and SS are fed to the k-means clustering for extracting code-
words of each category. We extract 10 codewords each for the
disease and soil categories, and denote them as CE and CS

respectively. Since the healthy part shows larger variations and
also responds with lighter green in regions around the diseased
part, we select 15 codewords CH . We combine CH , CE , and CS to
form a codebook with D¼35 codewords C¼ fc1; c2;…; c35g, which
will be used in the REM described below. An alternative approach
to our codebook learning is to directly learn the color codewords
from the images, which is not preferred because the resulting
codewords will mainly cover the variations in healthy and soil
parts, hence creating a biased codebook. Another possible
approach is to use various color invariants [31], for extracting
discriminative features that are invariant to illumination and
sensor characteristic. The authors in [31] show that some specific
color representations are very useful for applications such as face
recognition, and experimentally demonstrate that the non-linear
effects in the photometric response of the camera are important to
derive invariant representations. As one of our future work, it is
interesting to study whether similar finding can be observed in the
color representation of sugar beet plants.

3.3. Rating estimation module

Given the color codewords from the CGM, as well as the
superpixels of an image set, this rating estimation module per-
forms two main tasks: (1) feature representation, and (2) feature
selection and regressor learning. We now discuss them as follows.

3.3.1. Feature representation
Feature representation is critical for any computer vision sys-

tem. Classifying local regions in superpixel segments into diseased
or healthy may seem to be a trivial task. However, it is unclear how
Fig. 4. Superpixels at M¼500 (center) and 3500 (right) for a local region (left) of a captur
original captured image (e.g., one in Fig. 2).
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to generalize this task to consider a global image-level feature that
captures both the local pixel statistics, such as the small diseased
spots, and the global image regularity, such as a large region of
dead leaves. Moreover, a global fine-grained continuous rating
needs to be learned from the feature representation of images.
These considerations lead to the proposed novel Histogram of
Importances feature, computed in two steps.

In the first step, a histogram feature is extracted to represent
the color variation of all pixels within each superpixel based on
the color codewords. Given that an image I contains a set of M
superpixels SM ¼ fs1; s2;…; sMg, we compute a set of color histo-
grams H¼ ½h>

1 ;h>
2 ;…;h>

M �. For each superpixel smASM , we have
hmðdÞ ¼ hd

j hm j , where hd indicates the number of pixels u within sm
whose color is most similar to cd among all D codewords, i.e.,
hd ¼

P
uA smδðd¼ arg mind JIðuÞ�cd J2Þ, and δðÞ is the indicator

function.
Although hm is a good descriptor of local appearance at each

superpixel, it cannot be applied to regression learning directly
because superpixels between two images may not correspond to
each other, and the numbers of superpixels M can be different too.
Hence, we aim to extract an image-level feature independent of
superpixel locations or M. Specifically, by observing the matrix H
of an image, each element hmðdÞ indicates the relative importance
of the color feature cd within the superpixel sm. Such an impor-
tance value can vary between 0 and 1. By collecting all the
importance values corresponding to the same feature cd, i.e., one
column of H, we can form a T-dim histogram of importance (HoI)
gd, where gdðtÞ ¼

P
mδðt�1

T rhmðdÞo t
TÞ, 1rtrT , and both t and T

are integers. We show this procedure diagrammatically in Fig. 5.
By collecting the HoI of all D color codewords, we have a D� T
feature representation GM ¼ fgdg for one superpixel scale M.
ed image. Note that these images are the zoomed-in views of one local region of the
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Similar HoI features are also computed for the LBP-based tex-
ture features [32] LM , where D¼256. In our study, we use T¼10 for
color features and T¼5 for LBP features. Thus, for each image at
one superpixel scale, we have a total of 1630 features. To visualize
the HoI features, Fig. 6 plots GM of nine randomly selected images
at M¼500. We can clearly see a decrease of importance in healthy
features and a slight increase of importance in soil features, as we
move to higher ratings.

3.3.2. Feature fusion, selection and regression
As mentioned before, superpixels at different scales cover local

characteristics in different ways and provide different advantages
over each other. Therefore, to enjoy the benefits from every scale,
we compute the color and LBP based HoI, GM and LM , at all four
scales for each image, which results in a feature vector with the
length of 1630� 4. However, since not all feature elements have a
high discriminative power, we perform feature selection by the
correlation-based approach [33], which is based on two measures:
the high predictive ability and the low correlation with already
selected features. We then pass the selected set of 162 dis-

criminative features, f �GM
, �L

Mg, to the bagging M5P regressor
[34,35]. M5P decision tree learns different regression functions for
each leaf node of the tree. Experiments in Section 5 provide a
comparative study of different regression schemes on our features.
Our results show that bagging M5P to be superior to other well-
known regression paradigms.

3.4. Label enhancement module

So far we have presented a carefully designed learning-based
approach to automatically estimate or mimic the disease rating
manually labeled by domain experts. However, such manual rat-
ings, either from one expert or the average of multiple experts, are
inevitably noisy. For example, Fig. 7 shows that the disagreement
among experts is almost everywhere on an entire dataset, with
especially large variation for some images (Fig. 7 (a)). As
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mentioned before, the noisy label is caused by a number of factors,
including the level of sensitivity of the human eye, the nonspecific
definition of the USDA scale, and the existence of multiple plants
within one image. For these reasons, this issue cannot be solved by
the experts, and thus an automatic method to enhance the noisy
labels of a dataset is desired, which is exactly the objective of LEM.

One potential approach of LEM is to adopt unsupervised
learning to learn 11 clusters, each corresponding to one level of
CLS disease. However, our preliminary experiment shows that
without supervision it is difficult to ensure that the clusters are
indeed defined based on the CLS severity. Therefore, we make the
following assumption: the noise-free rating of a data sample is in
close approximation to its manual rating, and it is thus possible to
obtain the former by making a small adjustment to the latter.
Based on this assumption, we take the manual ratings as the
starting point, and improve them in a systematic manner, with the
goal that the enhanced labels will make the different rating levels
more discriminative in the feature space. This will in turn result in
an enhanced CLS Rater, when trained from the enhanced labels.
Specifically, given a dataset and its manual ratings as input, after
feature extraction from the REM, the LEM iteratively updates one
rating at a time in order to maximize the separation among
samples of different ratings. A simple illustration of our proposed
LEM is shown in Fig. 3, and a more detailed explanation is in
Algorithm 1.

Algorithm 1. Label enhancement module.
ancin
It is obvious that the order of samples being processed within
an input dataset of N samples affects the final enhanced labels.
Thus, we denote the method for selecting which sample to update
its label by F : Y↦j; jA1;2;‥;N, where j is the index of the candi-
date sample. In this work we explore three options for imple-
menting this function: (i) Random label selection: This function
randomly selects one sample from the input dataset, without
considering any prior knowledge about the label. (ii) Maximum
disagreement first: This function ranks all samples in the des-
cending order of the disagreement among the experts. It first
selects samples with the most confusing labels (i.e., the largest
disagreement). (iii) Maximum offset first: Given a dataset and the
current labels, a M5P regression-based CLS Rater is learned and
g plant-level disease rating systems in real fields, Pattern
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Table 1
Overall distribution of all labeled images across different ratings.

Manual rating 0 1 2 3 4 5 6 7 8 9 10

# of images in 2013 1 11 43 60 49 46 47 24 21 4 0
# of images in 2014 0 34 575 630 878 1121 663 121 2 0 0
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applied to the training dataset. The sample with the maximum
difference between the current label and the rating predicted by
CLS Rater is selected as the sample to be processed.

After finding the candidate sample, we assume that its label ~Y j

can make a small adjustment to one of the following neighboring
ratings: ½⌈ ~Y jþ0:5⌉; ⌊ ~Y j⌉; ⌊ ~Y j�0:5c�. Therefore, we consider the
possibility of either modifying this label to one of the neighboring
ratings, or maintaining its current label. For each possibility, we
compute the S value of the feature set X given the updated labels
~Y j, where S is the class separability computed via a multiclass
Linear Discriminant Analysis (LDA). Specifically, we compute Σb,
Σ, W, and S is the average of eigenvalues that are indicative of
linear separability among multiple ratings. Finally, we update ~Y to
the possibility that produces the maximum S value. Note that the
label of a sample can be modified more than once, when other
samples in the dataset are modified. While making modification
on the labels of the samples, it is important to preserve the range
of the labels because the S value will shrink if the range is reduced.
Therefore, we have a constraint to enforce that no label mod-
ification is performed for samples with the maximum rating or
minimum rating of a particular dataset. The enhancement process
will continue until there is no increase in S values. This means that
all data samples are well separated into rating clusters with the
minimum overlap among the clusters, and a regressor will then be
learned based on the enhanced labels ~Y .
4. Real-World Sugar Beet Database

Although there are prior works on computer vision-based
agriculture applications, there are very few public databases of
plant images that are captured in the field. Thus, one contribution
of our work is to acquire a sugar beet plant database in two con-
secutive years with the same imaging setup, and to make this
database publicly available.

A conventional RGB camera was attached to a tractor pointing
downwards at a height of 1.2 m. The tractor drives through the
sugar beet field while maintaining a constant speed of �1 m s�1

(2.2 mph), capturing videos at a frame size of 1080� 1920 and 30
frames per second for the entire field. We reduce the frame size of
all images to 540� 960 for improved computational efficiency. To
record the progress of CLS disease, we collect videos periodically
during the sugar beet growing season, across a period of two
months capturing a wide range of disease severity. Our sugar beet
field is of a rectangular shape at 135� 168 m. Each section of the
field corresponds to a known sugar beet cultivar, with a total of
458 cultivars over the entire field. Hence, the CLS rating study
provides many insights to the domain experts regarding the CLS
resistances of various cultivars. Along the short edge of this rec-
tangle there are 22 parallel field lines with equal distances
between them, where our tractor drives along each of the field
lines for data collection.

The first part of the database was captured from July 30, 2013
to September 12, 2013 on 10 different dates. Among these 10
dates, there are 6, 2, and 2 dates with sunny, cloudy and partly
cloudy weather respectively. We collect 220 total videos, i.e., 22
videos per day. Each video is about 3 min long and covers one field
line. We select a diverse set of 306 images from this dataset ran-
ging through all dates to capture all possible disease ratings. Using
the USDA scale, three experts independently provide manual rat-
ings for all these images. The overall distribution of all labeled
images across different ratings is tabulated in Table 1. The ratings
provided from three experts for all 306 images are also shown in
Fig. 7, illustrating the variations in the ratings.

The second part of the database was captured from August 15,
2014 to September 12, 2014 on 7 different dates. Among these
Please cite this article as: Y. Atoum, et al., On developing and enh
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7 dates, there are 3, 1, and 3 dates with sunny, cloudy and partly
cloudy weather respectively. This part used the exact same ima-
ging setup as the first part, where the only differences are in the
capturing and labeling procedure. Instead of capturing every line
in the field separately, the entire field was captured in a total of
2 videos. A GPS system, as an integrated component of the tractor,
was utilized to record exact longitude and latitude coordinates
while capturing videos. For this part, only one expert provides
manual ratings to the plants on 4 out of 7 dates, while she walks
through the field, and the manual ratings are recorded w.r.t. the
locations of cultivars. Since we aim to have labels for all 2014
datasets, we did not ask the expert to manually label a small
subset of images. Instead, using the GPS data, we map all manual
ratings in the field to specific video frames, as shown in Fig. 8.
However, due to imprecise GPS data, the manual ratings in 2014
dataset are not as ideal as the one in 2013 dataset.
5. Experimental results

In this section, based on the Real-World Sugar Beet Database,
we design experiments to answer the following questions: (1)
How does the CLS Rater perform in comparison to manual expert
rating? (2) How do different regression schemes perform at dif-
ferent superpixel scales? (3) How do our discriminative features
vary across different CLS ratings? (4) Does maximizing the
separation value in the LEM indeed change labels according to
disease levels? (5) How do we evaluate the performance of the
enhanced labels? We now discuss different aspects of our
experiments.

Experimental setup: Most of our experiments are based on the
2013 dataset, where we randomly split the 306-image set into two
equal parts and use one for regressor training and the other for
testing. This is also repeated to generate multiple partitions of
training and testing sets. For each image Ii in our dataset, the
manual ratings from three experts are averaged to generate the
ground truth rating r i. Given r i and the estimated rating of r̂ i from
CLS Rater, we compute the rating error of our system on a K-image
testing set as e¼ ð1K

P
i Jr i� r̂ i J2Þ1=2.

Feature analysis:We start by analyzing the performance of the
proposed HoI features and the selected features by one of the best
performing classifiers, M5P regressor as indicated in the regression
result section, during the training stage. Specifically, we evaluate
the effectiveness of the selected features and compute their fea-
ture value across different unseen testing images with varying CLS
disease ratings. Note that the M5P is a tree-based regressor, where
each node is associated with a selected feature. From the M5P
hierarchy, we select the top four nodes (features) that represent
different types of features, i.e., the color features from the disease,
soil and healthy region and one LBP-based texture feature. In order
to see how effective these four selected features are on the testing
images, we allocate the testing images with the same ground truth
rating into one group. For each of the four selected features, we
compute its average feature values from images within the same
group. This leads to a vector for each selected feature, which is
further normalized by dividing with the maximal element in the
vector. We plot the resulting four vectors in Fig. 9, which illustrate
a clear trend of the four features. We notice a proportional
ancing plant-level disease rating systems in real fields, Pattern
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Fig. 8. Mapping GPS coordinates to specific video frames. The blue and black lines represent two video sequences captured on August 21, 2014. The green and red circles
represent the start and end of each video sequence respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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relationship among soil, disease and LBP features with a high
correlation in the behavior across ratings. Whereas, the healthy
leaves tend to have an inverse relationship with all other features.
This is highly expected, since at higher ratings, the amount of
green leaves in the frame decreases, which are typically replaced
with diseased leaves and soil. This study also provides an insight
on how the HoI feature element extracted from various regions
contributes to CLS rating.

CLS Rater prediction analysis:While Fig. 9 indicates the strong
correlation between the novel HoI features and the rating, the
ability of CLS Rater to predict rating is more important. Our CLS
Rater is designed to predict ratings based on the USDA scale with
11 different levels of disease ratings. To analyze the predictions of
our rater based on the novel HoI features, we attempt to test the
discriminative ability of the rater across a large variety of ratings.

Using the experimental setup on the 2013 dataset, the predic-
tions on one testing set are illustrated in Fig. 10. The narrow line-
like plot shows that the rating error is evenly distributed across
the entire rating range, and also our CLS Rater is able to predict
labels very similar to the human labels on the unseen data, which
is desired for practical applications.

Fig. 11 illustrates the strength of the CLS rater at a global scale,
as well as locally at more challenging cases with high disagree-
ment. We use the labeled data collected from 2013 that consists of
306 samples, where every sample is labeled by three experts. At a
local scale, the data samples with high disagreement tend to have
similar rating errors as the samples with lower disagreement. At a
global scale, the absolute difference between the experts mean
rating and the CLS estimated rating is all less than 1.3 (i.e., worst
case) on the USDA scale, with an average error of 0.65, which is far
less than most of the standard deviations of expert ratings.
Please cite this article as: Y. Atoum, et al., On developing and enh
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Label enhancement results:We now study the LEM and its con-
tribution to CLS Rater. First, we explore the various methods for
selecting which sample to update the label, which is the function F
with three options: random label selection, maximum disagree-
ment first or maximum offset first. We attempt to enhance the
ground truth label of the training set of 2013 dataset with a total of
153 images. Fig. 12 shows a comparison of all three functions
during the iterative process of selecting the candidate sample. It is
worthy to note that all three methods start at low S values
ancing plant-level disease rating systems in real fields, Pattern
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meaning that the ground truth ratings are not well separated
among different ratings. The best resulting S value is produced
using the maximum disagreement first method, which converges
at S¼ 172 after a total number of 1982 iterations. This method
selects the sample with ratings that has the highest inconsistency
among multiple experts.

After the label enhancement converges, we can compare the
original ground truth ratings (average of three manual ratings)
with the enhanced ratings generated from the maximum dis-
agreement first method, as shown in Fig. 13. On one hand,
although on average each samples rating has been examined
nearly 13ð � 1982

153 Þ times, the differences between the original and
final ratings are very minimal, where the absolute difference has a
distribution of N ð0:56;0:62Þ. This is a good indication of our
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assumption that noisy-free label of a sample is in close approx-
imation to its manual label. On the other hand, even with a small
modification on the ratings, a much larger S value is achieved
which indicates improved separability among different ratings.

Since the LEM operates on a particular dataset, it is possible
that one sample might converge to different enhanced ratings
when it is a member of a different dataset. Obviously this is not
desired, and therefore we design experiments to explore this
potential issue. On the 2013 dataset, we generate five random
subsets of data with a different number of images, and apply LEM
based on maximum disagreement first to each subset. Fig. 14
shows the label enhancement results for all five subsets, and the
bottom row shows the standard deviation of the enhanced ratings
of common samples across five sets. An average standard devia-
tion of 0.41 is obtained over all common samples. Therefore, we
can observe that the dependency of enhanced ratings to a parti-
cular dataset composition is relatively low, and it seems that the
enhanced ratings are moving toward the noisy-free labels of the
samples.

Fig. 12 shows that the larger separability can be achieved using
the enhanced ratings on the dataset where LEM is applied. The
next step is to validate that if we learn an enhanced CLS Rater from
the enhanced ratings and apply it to an unseen dataset, whether a
larger separability can still be observed. To test this generalization
capability, using the training set we learn four CLS Raters based on
four labels, the ground truth ratings and the enhanced labels with
each of three sample selection functions. Each CLS Rater is applied
to the testing set, and based on the estimated ratings all testing
samples can be grouped into multiple classes. Then we calculate
the eigenvalues of the matrix Σ�1Σb, where Σ and Σb are com-
puted as in Algorithm 1. By repeating this experiment on ten
random partitions of training and testing sets, we show the dis-
tribution of top eigenvalues in Fig. 15. Since larger eigenvalues
indicate high linear separability among the classes, the result
demonstrates that the enhanced CLS Rater is able to make the
unseen testing set more separable and less confusing between
consecutive rating levels. Also, among the three sample selection
functions, the maximum disagreement first method seems to have
a minor advantage over the others.

Regression results:Using the 2013 dataset, we evaluate a diverse
set of regression methods belonging to three categories: (1) func-
tional regression (SVM [36], Least Median Squared Linear (LMS)
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different subsets of 2013 dataset. Row 6 is the standard deviation of the enhanced
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[37], and Linear), (2) decision tree learning-based regression (M5P)
[35], and (3) rule learning-based regression (M5Rules) [38]. We
use bagging with each of these methods to enhance their pre-
dictive abilities. To remove the bias in coding, we utilize the
standard regression implementations in [33]. Table 2 shows the
results where the mean and standard deviation of rating errors are
computed from five random partitions of the 2013 dataset. When
no “LEM” is used, both the training and testing are based on the
ground truth ratings, i.e., the average of three ratings.

We observe that while features at different superpixel scales
are preferred by different regression methods, the fused feature
ðSallÞ achieves the best performance regardless of the method. Also
in general M5P performs the best among all regression methods.
Therefore, our CLS Rater utilizes the fused feature with an M5P
regressor. The baseline method to compare with our HoI feature is
the well-known BoW features [30] based on the 35 color code-
words and 256 LBP codewords of each image. As shown in the
BoW column of Table 2, none of the regression methods based on
BoW are superior to CLS Rater.

By using the LEM, we evaluate the performance of enhanced
CLS Rater. Since the enhanced CLS Rater is trained on the
enhanced labels, its rating error is also computed w.r.t. the
enhanced labels on the testing set, which is obtained by applying
the LEM to the testing set. It can be seen that the fused feature
with a M5P regressor is still superior to other regressors or other
features. Also, in almost all cases, the enhanced CLS Rater has
smaller rating errors than the original CLS Rater, with the mini-
mum error reduced from 0.65 to 0.59. On one hand, this super-
iority indicates that the enhanced CLS Rater can predict ratings
more consistently and with less confusion. On the other hand, the
reduced error is especially encouraging when the labels in the
training set and testing set are independently enhanced via LEM.
Furthermore, note that the improvement margin of the enhanced
CLS Rater is larger for linear regressors (LMS or Linear). A group of
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Fig. 15. Eigenvalues of the LDA on the testing set when the CLS Rater is trained
with different labels.

Table 2
Rating error ðeÞ at different superpixel scales.

Regression LEM S500 S1500

M5P No 0:9070:03 0:9170:04
Yes 0:7270:03 0:7370:06

SVM No 1:1070:09 1:1270:05
Yes 0:6970:03 0:7970:05

Linear No 1:4670:17 1:4070:11
Yes 0:6770:02 0:7870:02

M5Rules No 0:9270:04 0:9270:05
Yes 0:6670:03 0:7370:03

LMS No 1:3570:42 1:4170:17
Yes 0:6670:01 0:8170:08
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test images along with the three ratings are illustrated in Fig. 16,
where each column shows three samples with manual ratings
being very similar. We observe that the plants in the same column
may show different resistances to CLS, thus assign them with the
same manual rating indicating the noisy labels from the experts.
For example, the image in the first row and third column has an
assigned manual rating of 5.3, yet its resistance is more similar to
plants in the second column. Therefore, it is desired that the CLS
Rater and enhanced CLS Rater predict the ratings of 4.0 and
4.1 respectively. While this is the case of an overrating from the
experts, there are also cases of underratings, such as the example
at the second row and second column.

Finally, we also explore the scenario of evaluating the enhanced
CLS Rater w.r.t. the ground truth ratings. Trained with M5P
regressor on the enhanced labels from the maximum disagree-
ment first function has an average rating error of 0.83. Clearly this
is an unfair scenario since training and testing are based on dif-
ferent types of labels, i.e., train on the enhanced labels while
evaluating w.r.t. the ground truth ratings. However, this relatively
small rating error is a good indication that the LEM is indeed
updating labels according to disease levels.

We further explore how the regression methods perform w.r.t.
different types of appearance features, i.e., color and LBP. As shown
in Fig. 17, when learning the regressor with ground truth ratings,
fusing color and LBP features improve the system performance for
various regression methods. Note that the enhanced CLS Rater also
uses the combined color and LBP features. However, M5P and
M5Rules perform well using color alone, and fusing with LBP has
no noticeable improvement in the rating error. Moreover, when
combining color and LPB using the enhanced CLS Rater, all
regressors have substantially improved to almost the same high
performance, i.e., around 0.6 error rate. In other words, when
using enhanced CLS Rater, the choice of regression methods is less
important, which allows us to use a more efficient and simple
regressor, yet still achieving the high performance.

CLS Rater vs. expert rating:In general, it takes about five seasons
to train an unskilled individual for rating CLS disease and at least
one season to train a pathologist. However, it is well known that
human experts tend to provide inconsistent rating for CLS as
discussed earlier. Hence, it is interesting to compare the rating
error of CLS Rater to the error observed in human expert rating.
The minimum rating error is 0.65 for CLS Rater, and 0.59 for
enhanced CLS Rater, as shown in Table 2. For comparison, we
calculate the standard deviation of expert rating using the same
equation as our system error e, i.e., eh ¼ ð 1

3K

P
i
P

j Jr i�rji J
2Þ1=2.

Based on the same five partitions in computing e, the standard
deviation of expert rating eh is 1:3170:08. The superior con-
sistency of our system, i.e., with or without the LEM, over the
human experts indicates the great potential of applying CLS Rater
in practices.

CLS Rater across the years:Ideally the CLS Rater learned from
data samples of one year can be repeatedly utilized in the real field
S2500 S3500 BoW Sall

0:8870:03 0:6970:04 0:7370:02 0:6570:03
0:7570:02 0:6270:02 0:7270:02 0:5970:04
1:0570:09 0:8170:08 0:8370:03 0:7570:04
0:7970:07 0:6370:02 0:7970:08 0:6070:02
1:0670:13 0:9170:03 0:8370:04 0:8270:06
0:7570:02 0:6470:01 0:7970:03 0:6270:01
0:8970:03 0:7070:03 0:7470:03 0:6670:05
0:7670:01 0:6570:01 0:7870:04 0:6170:02
0:9570:04 0:9470:12 0:8570:03 0:7070:04
0:7670:02 0:6470:01 0:8870:03 0:6270:05
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in subsequent years. Therefore, it is important to evaluate the
generalization capability of CLS Rater on a testing set that is col-
lected from a different year as the training set. For this purpose, we
use the 2013 dataset as the training set and the 2014 dataset as the
testing set. The labels for the training set are either from one
(1.7, 2.4, 2.5)

(2.3, 2.9, 2.6)

(1.0, 1.7, 1.9)

(3.7, 3.8, 4.5)

(3.7, 3.9, 4.5)

(4.0, 4.4, 5.5)

Fig. 16. Examples of testing images with the CLS ratings in the form (a–c), where (a) is th
the enhanced CLS Rater prediction.
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expert (who also labeled the 2014 dataset), or the enhanced labels
by LEM based on the maximum offset first function, which result
in the CLS Rater and the enhanced CLS Rater respectively. Simi-
larly, two types of labels exist for the testing set. As shown in
Fig. 18, each box represents the manual ratings of the field at a
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specific day, which is made of 22� 46 subunits, where 22 is the
number of field lines and 46 is the number of evenly sampled
images along each field line. Note that only one expert provides
ratings for the four chosen days to record various disease ratings.
The second row shows the enhanced ratings after applying LEM
using the maximum offset first function.

By applying CLS Rater and the enhanced CLS Rater on the
testing set, we obtain the rating results in Fig. 19. We can see that
the CLS Rater was not very successful at predicting very high or
low rating in “Sept 3” and “Aug 15”. Moreover, it appears that
cultivars located on lines 7 and 8 have relatively higher resistance
to the CLS disease in comparison to other lines. An average rating
error of the CLS Rater is 1.26 w.r.t. the manual ratings, while an
average rating error of 1.05 is achieved for the enhanced CLS Rater
w.r.t. the enhanced ratings. Therefore, similar to Table 2, we see
again that the enhanced CLS Rater provides more consistent rat-
ing, even for across-year experiments. The reason for observing
higher rating errors than Table 2 is twofold: (i) the appearance
variation between the years; (ii) the imprecise mapping of GPS
data to video frames, and hence assigning manual rating to frames.
Nevertheless, the rating error in this challenging across-year
experiment is still smaller than the standard deviation of the
combined expert ratings in 2013.
6. Conclusions

This paper introduced a novel computer vision system, CLS
Rater, which uses real field plant images for the automatic rating
of the CLS disease in sugar beet plants. Our CLS Rater utilizes a
novel HoI feature to represent the local characteristics of super-
pixels at the image level and predicts the rating with an error of
0.59, which is substantially more consistent in comparison to
manual ratings performed by human experts. We tested our sys-
tem on a real field of sugar beet plants under different lighting and
weather conditions for two consecutive years. We also addressed
the issue of the noisy expert labels by developing an LEM to
enhance the labels. One future direction is to learn CLS Rater from
a set of image pairs each ranked by their disease severity, using
approaches such as boosted rank learning [39]. Furthermore, since
the technical approach of CLS Rater is very general, it is potentially
applicable to disease monitoring of other plants and a variety of
precision agriculture applications in the real field.
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