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Supporting Material - Figure S1

Figure 1: a,b) Single cells within plane c) cell through plane d,e) two cells f) 3 connected
cells g, h, i) showing cells bounded within blood vessels, with some at bifurcations; scale
bars are 25 ums. Cropped from images with width of 300 um (no MPIO labeled MSCs were
cropped from view).
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Figure 2: Similar to the concept of eigen faces, Principle Component Analysis (PCA) was
utilized to extract eigen spot shapes using all of the 9× 9 spot patches in the training set.
The top PCA component for the spot patches obtained on three labeled rats in GA are shown
here. An iteratively increasing threshold is then applied on the values of these top PCA
components to extract different binary patches that are utilized as filters to capture the shape
and intensity information on spot patches.
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Figure 3: Binary shape filters are obtained using the top PCA components (shown in Fig.
S2.). By iteratively increasing the threshold values from dark to light intensities, PCA
components can result in different binary shapes. Domain experts agree that these binary
filter patches represent many frequent shapes of the actual spots. All these patches are rotated
and translated to obtain a large set of different shape filters. These filters are convolved with
each candidate patch and the computed response is taken as a feature. A large set of these
responses comprehensively captures the shape and intensity information of spot patches.



Supporting Material - Figure S4

Figure 4: Visual representation of context features for two context patches: While learning the
definition of a spot, it may also be useful for a classifier to learn more about its surrounding
context. Therefore, to capture the appearance of the patch’s context, a larger patch of
21× 21 was extracted around the center of a candidate patch xi. Two well-known appearance
descriptors in computer vision were then used to extract features: (a) Histogram of Gradients
(HoG) and (b) Gist. A visual representation of HoG for two context patches is shown here.
Red lines here indicate the different directions of intensity gradients whereas the lengths of
the lines determine their magnitude.

Supporting Material - Figure S5

Figure 5: CNN architecture used in this work. The network takes a 9x9 image patch as
input for a classification task i. Each composite layer Lk , k ∈ {1, 2, 3}, is composed of a
convolutional layer Cik which produces the feature maps F ik and a non-linear gating function
β producing the transformed feature maps F ik

β . After passing through the composite layers,

the net passes through the fully connected layer Lfc which produces the output. The softmax
function is then applied to the output. Note that in the context of this work, this architecture
represent the model M . The weights of all the filters across its processing layers are learned
using the training data.
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Figure 6: Some convolution filters learned by the 2nd composite layers of our deep learning
approach. Usually, each filter acts as a neuron and due to co-adaptation between a large
number of such neurons, highly sophisticated features are extracted that can potentially
model spot shape, intensity, texture etc.
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Figure 7: Transformed, average images for different source datasets.
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Cell preparation

A model of single, dispersed cells in the rat brain was created by intracardiac injection of
magnetically labeled MSCs. Animal experiments were approved by the Yale University and
Michigan State University Animal Care and Use Committees. MSCs were maintained in low
glucose DMEM without L-glutamine, supplemented with 10% fetal bovine serum (FBS), 1%
L-glutamine, and 1% penicillin/streptomycin. The cells were grown until 80% confluent in
T25 culture flasks. Prior to injection, MSCs were labeled with fluorescent 1.63 micron MPIO
(Bangs Laboratory, Flash Red) by overnight incubation at a concentration of 40 beads per
cell (∼44 pg Fe/cell), followed by washing in PBS to remove uninternalized particles. This
labeling scheme has previously been validated to label cells to a level of ∼10-15 pg Fe/cell
(37). Control cells were labeled with media only. Unlabeled and MPIO labeled MSCs were
also stained with carboxyfluorescein succinimidyl ester (CFSE), a fluorescent dye. In brief,
cells were incubated for 5 min in a concentration of 0.05mM CFSE and then washed twice
with PBS containing 5% HI FBS after centrifugation at 300g for 5 min. Prior to injection,
the cells were then diluted in 0.9% saline into two concentrations (n=3/group), which would
deliver 200,000 cells (Set GA) or 250,000 cells (Set GB) per 200uL injection.

Animal preparation

Adult Fischer rats were anesthetized with 3% isoflurane in 90% oxygen/10% medical air
and orally intubated. A mechanical ventilating unit provided regulated breathing at 65
breaths/minute. Respiratory patterns and end tidal CO2 were monitored. After being placed
in the supine position, rats were shaved along the left side of the chest, from the sternum
downwards and prepped using aseptic technique. No skin incisions were made; rather, cells
were injected noninvasively. 200,000 or 250,000 MPIO labeled MSCs or unlabeled MSCs
(200 µL) were injected slowly into the left ventricle of the rodent heart with a 1 ml syringe
attached to a 30-gauge needle. The needle was held at a 45-degree angle, placed ventrally,
just left of the sternum, and lowered into the intercostal space between the 6th and 7th ribs.
Noticeable blood flow into the syringe was used to gauge placement of the needle into the
left ventricle. Animals remained under anesthesia, with ventilated breathing for 1−1.5 hours
before being imaged on MRI

In vivo MRI

MRI of live rats was performed on a 7.0T Bruker Biospin or 11.7T Varian system, 1−1.5
hr after intracardiac injection of unlabeled or MPIO labeled MSCs. Separate transmit-only
volume and receive-only surface coils were used. During MRI, rats remained mechanically
ventilated at 65 breaths/min, under 3% isoflurane anesthesia in 90% oxygen/10% medical air.
End tidal CO2 and respiratory patterns were monitored. T∗

2 weighted 3D gradient echo MRI
was performed at 100 micron resolution using the following imaging parameters: TR = 30
ms and TEs = 10 (7.0T) or 8 (11.7T) ms.



Histology

Immediately following MRI, rats were transcardially perfused with warm 0.9% saline, followed
by ice cold 4% paraformaldehyde solutions of pH 6.5 and pH 9.5. Brains were excised and
post-fixed in 4% paraformaldehyde with 10% sucrose at 4◦C. After sinking, brains were rinsed
in PBS, patted dry, placed in a plastic cryomold, and immersed in TissueTek embedding
compound. After a few minutes of equilibration, brains were quickly frozen on dry ice and
stored at -80◦C. A cryostat was used to cut 16µm sections of the brains. Slides of interest
were hydrated in PBS for 10 minutes, and mounted with ProLong Gold antifade with DAPI.
Fluorescent microscopic images were acquired with the GFP filter for MSCs, Texas Red filter
for MPIOs, and the UV filter for DAPI. Images of cells were taken with an approximate
width of 300µm across. To determine the percentage of images containing 1, 2, or 3 cells,
the number of MPIO labeled cells in each image was counted for a total of 70 images. Each
image was cropped to a FOV of 100 µm across for a closer view of the cells to display in
Figure S1; no MPIO labeled MSCs were removed from view by cropping.



Supporting Material - Source CNN Selection

This section explains how the terms Ji and Ui, utilized in the CNN selection criterion, are
computed.

As mentioned in the paper, the proposed CNN architecture can be seen as a sequence of
functions and therefor for a specific task i, it can written as:

Mi = (fui ◦ f(u−1)i ◦ f(u−2)i◦, ..., ◦f1i). [1]

where, f(u−1)i denotes the fully connected layer whose output is subjected to a softmax
function in fui. f(u−2)i represents a non-linear activation function whereas f(u−3)i denotes the
deepest convolutional layer.

The CNN learned on small MRI data M already captures the information available in the
target’s training data X. Therefore the goal of transferring weights (also called learned
feature representations) from a source CNN is to capture that information which is not
already accounted for by M and may be relevant in distinguishing a spot patch from non-spot
patches. Intuitively, a source ranking criterion can be based on :

1. how different is the learned information (CNN weights) of a source CNN Mi from the
target CNN M? If the source CNN Mi provides the exact same information as M
then a transfer from such a source may not result in any performance improvement.
Hence difference between the learned weights of the two CNNs is a desirable property.
Previous research shows that the feature representations (weights) learned in the initial
convolutional layers are more generic and may be the same irrespective of the learning
task. However, the deeper convolutional layer are more task specific. Therefore, the
difference between two CNNs, i.e., M and Mi is denoted by Ji which is given by

Ji = ||W(u−3)x −W(u−3)i||22. [2]

where W(u−3)i denotes a vector containing all the weights in the deepest convolutional
layer f(u−3)i of the CNN Mi. Similarly, W(u−3)x denotes the deepest convolutional layer
weights of the CNN M .

2. how discriminating a source CNN Mi is for the target task? This determines how
relevant a source CNN is to the target task despite its difference with M . This can be
measured by computing Ui for each source CNN Mi.

Ui = ||Y −Mi(X)||22. [3]

where Y denotes a vector of labels on training data X and Mi(X) represents the vector
of predicted outputs resulting when the source CNN Mi operates on the target’s limited
training data X as a test set.


