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Purpose: Magnetic resonance imaging (MRI)-based cell track-

ing has emerged as a useful tool for identifying the location of
transplanted cells, and even their migration. Magnetically

labeled cells appear as dark contrast in T2*-weighted MRI, with
sensitivities of individual cells. One key hurdle to the wide-
spread use of MRI-based cell tracking is the inability to deter-

mine the number of transplanted cells based on this contrast
feature. In the case of single cell detection, manual enumeration
of spots in three-dimensional (3D) MRI in principle is possible;

however, it is a tedious and time-consuming task that is prone
to subjectivity and inaccuracy on a large scale. This research

presents the first comprehensive study on how a computer-
based intelligent, automatic, and accurate cell quantification
approach can be designed for spot detection in MRI scans.

Methods: Magnetically labeled mesenchymal stem cells
(MSCs) were transplanted into rats using an intracardiac injec-

tion, accomplishing single cell seeding in the brain. T2*-
weighted MRI of these rat brains were performed where
labeled MSCs appeared as spots. Using machine learning and

computer vision paradigms, approaches were designed to
systematically explore the possibility of automatic detection of

these spots in MRI. Experiments were validated against known
in vitro scenarios.
Results: Using the proposed deep convolutional neural net-

work (CNN) architecture, an in vivo accuracy up to 97.3% and
in vitro accuracy of up to 99.8% was achieved for automated

spot detection in MRI data.
Conclusion: The proposed approach for automatic quantifica-
tion of MRI-based cell tracking will facilitate the use of MRI in

large-scale cell therapy studies. Magn Reson Med 00:000–
000, 2016. VC 2016 International Society for Magnetic
Resonance in Medicine.
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INTRODUCTION

Cell-based therapies are poised to make a significant
impact across a broad spectrum of medical scenarios. In

regenerative medicine, stem cell transplants are in vari-
ous stages of clinical trials for treating or slowing a myri-
ad of diseases, including Parkinson’s disease (1,2),
rheumatoid arthritis (3,4), and multiple sclerosis (5,6).
Cell-based therapy in the form of cancer immunotherapy
is also being tested in clinical trials (7,8). It is well
acknowledged that imaging the location of transplanted
cells, both immediately and serially after delivery, will
be a crucial component for monitoring the success of the
treatment. Two important applications for imaging trans-
planted cells are:

1. to noninvasively quantify the number of cells that
were delivered or that homed to a particular loca-
tion, and

2. to serially determine if there are cells that are leav-
ing desirable or intended locations and entering
undesirable locations.

For multiple reasons, including image resolution, lack
of radiation, and established safety and imaging versatili-
ty, magnetic resonance imaging (MRI) has emerged as
the most popular and perhaps most promising modality
for tracking cells in vivo following transplant or delivery.
In general, MRI-based detection of cells is accomplished
by first labeling cells with superparamagnetic iron oxide
nanoparticles or microparticles, though some cell types
can be labeled directly in vivo, such as neural progenitor
cells. Following transplant, these labeled cells are then
detected in an MRI using imaging sequences where the
signal intensity is sensitive to the local magnetic field
inhomogeneity caused by the iron oxide particles. This
results in dark contrast in the MRI (9,10). In the case of a
transplant of large numbers of magnetically labeled cells,
large areas of dark contrast are formed. In the case of iso-
lated cells, given sufficient magnetic labeling and high
image resolution, in vivo single cell detection is possible,
indicated by a well-defined and well characterized dark
spot in the image (See Fig. 1).

Due to the rather complex relationship between iron
content, particle distribution, iron crystal integrity, dis-
tribution of magnetic label and cells, and soforth, it is
difficult to quantify cell numbers in an MRI-based cell
tracking experiment. This is especially the case for a sin-
gle graft with a large number of cells. There are efficient
methods of quantifying iron content, most notably using
SWIFT based imaging (11), but the direct correlation to
cell number is not straightforward, due to the reasons
listed above. MRI-based detection of single cells presents
a much more direct way of enumerating cells in certain
cell therapy type applications, such as hepatocyte trans-
plant (10), or for immune cells that have homed to an
organ or a tumor (12). In this case, the solution is
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straightforward: if dark spots in the MRI are from single

cells, then counting these spots in the MRI should yield

cell number. While seemingly straightforward, perform-

ing such quantitative analysis on three-dimensional (3D)

data sets is a difficult task that cannot be accomplished

using traditional manual methodologies. Manual analysis

and enumeration of cells in MRI is tedious, laborious,

and also limited in capturing patterns of cell behavior.

In this respect, a manual approach cannot be adopted to

analyze large scale datasets comprising dozens of

research subjects. Various commercial software that are

currently available for MRI can only assist a medical

expert in conducting manual analysis. The problem is

further compounded in the case of eventual MRI detec-

tion of single cells at clinical resolution, which is lower

than that achieved on high field small animal systems.

At lower image resolution, the well-defined, well-charac-

terized dark spot loses shape and intensity and can be

difficult to manually define in a large number of MRI

slices.
These hurdles highlight the pressing need to develop

an automatic and intelligent approach for detecting and

enumerating transplanted cells in MRI, meeting all the

aforementioned challenges. An automatic and intelligent

approach can allow researchers to efficiently conduct

large scale analysis of transplanted cells in MRI,

FIG. 1. Three orthogonal MRI slices extracted from 3D data sets of the brain from animals injected with unlabeled MSCs (top row) and

magnetically labeled MSCs (middle row). Note the labeled MSCs appear as distributed dark spots in the brain unlike unlabeled MSCs.
The bottom row shows three different fluorescence histology sections from animals injected with magnetically labeled MSCs confirming
that these cells were present in the brain mostly as isolated, single cells. Blue indicates cell nuclei, green is the fluorescent label in the

cell, red is the fluorescent label of the magnetic particle (See the Supporting Information Fig. S1 for details).
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facilitating the exploration of new transplant paradigms
and cell sources. Such generalized intelligent tools will
find use across a broad spectrum of biomedical pursuits.
However, the unique challenges of designing such a tool
has not been addressed in any prior literature, especially
in the context of detecting cells in MRI.

To design and evaluate an intelligent and automatic
approach for cell spot detection in MRI, ground truth
definitions, i.e., labels, that annotate spots in MRI
images, are required. In (13), authors recognized the
need for automation and adopted a threshold-based strat-
egy for automatically detecting spots in MRI. However,
their approach was not evaluated using a ground truth.
Although such threshold reliant approaches are not
known to be intelligent for handling variations and
diversity in data, their study in fact highlights the need
for automation (14,15). Automatic machine learning
(ML) approaches have been successfully used in a wide
range of image analysis applications (14,16,17). However,
it is unexplored how such approaches can be appropriat-
ed to the problem of MRI spot detection. Further, state-
of-the-art ML approaches rely on a large volume of train-
ing data for accurate learning. Unfortunately, due to
practical limitations, generating large-scale annotated
data is challenging in both preclinical and the clinical
arenas. Annotation can also be prohibitively time con-
suming and can only be performed by a medical expert.
Hence, crowd sourcing approaches such as the use of
Amazon’s Mechanical Turk (18), cannot be adopted for
annotation in such applications. Therefore, the problem
of spot detection using a limited amount of annotated
training data, is an additional unaddressed challenge. In
summary, the problem of 3D spot detection in MRI
presents the following key challenges:

1. Candidate region extraction: Given an MRI scan,
how can all the candidate regions that can poten-
tially contain a spot be effectively and efficiently
extracted?

2. Feature design: What will be the best feature repre-
sentation to accurately capture the interclass
appearance variations of spots in MRI?

3. Dataset collection: Intelligent ML approaches will
require annotated (labeled) MRI datasets for spot
detection. Therefore, a diverse set of MRI scans
need to be collected and labels must be obtained on
them.

4. Learning with limited data: Further, how can state-
of-the-art ML approaches learn to detect spots in MRI
despite using very limited MRI data for training?

This article addresses these challenges of automated
spot detection in MRI and presents the first

comprehensive study to investigate how different ML
approaches encompassing three different paradigms, can
be utilized for this purpose. Experimental results of the
approaches proposed in this article show that spots can
be automatically detected using ML techniques in
unseen in vivo MRI scans with an accuracy of up to
97.3%.

METHODS

Datasets

As shown in Table 1, a diverse set of 33 in vitro MRI
scans of gel samples and 7 in vivo MRI scans of rat
brains with transplanted stem cells were utilized in this
study. More than 19,700 manual ground truth labels
were collected on 15 of these scans (GA � GD). A flexible
software tool (with image pan, zoom, slice advance, con-
trast manipulation, etc.) was specifically designed to
allow our medical expert to put a mouse cursor over a
spot in an MRI and click the mouse button to record that
spot. These clicked points are taken as our ground truth
(labels) on spots in MRI. In addition, theoretically com-
puted cell numbers on 25 scans were also utilized as
ground truths during the approach evaluation.

In vitro: Imaging phantoms were constructed consist-
ing of a known number of 4.5-micron diameter, magnetic
microparticles with 10 pg iron per particle, suspended in
agarose samples. Each microparticle approximates a sin-
gle magnetically labeled cell with appropriate iron con-
tent for MRI-based single cell detection (19). T2*-
weighted gradient echo MRI was then performed on
these samples at a field strength of 7T.

As can be seen in Table 1, these scans have variation
in resolution, matrix sizes, and amount of spots (labels).
GE has 25 data sets, collected from five samples under
five different MRI conditions. These conditions were var-
iations in TE from 10–30 ms (signal to noise >30:1), and
images with low signal to noise ratio (�8:1) at TE¼10
and 20. The effect of increasing TE is to enhance the size
of the spots. The higher the TE, the larger the spot (19).
The downside of higher TE is that the physics which
governs enlargement of the spot, the difference in mag-
netic susceptibility between the location in and around
the magnetic particles and the surrounding tissue, also
causes the background tissue to darken. The rationale to
collect images with both high and low signal to noise
ratio is to test the robustness of our spot detection proce-
dure in two potential in vivo scenarios. Manual ground
truths were collected from experts on eight in vitro MRI
scans of GC and GD. These sets were used for training
and evaluating ML approaches. For GE, the theoretically
computed ground truth was known. This set was used

Table 1
Collection Details and Characteristics of our MRI Database

Set Type Subject Labeler Machine Labeled scans Total labels Resolution Size

GA in vivo Brain R1 11.7T G1A;G2A;G3A;G4A;G5A 15,442 100 mm 256� 256� 256
GB in vivo Brain R2 7T G1B;G2B 2992 100 mm 256� 200� 256
GC in vitro Tube R2 7T G1C;G2C;G3C;G4C 814 100 mm 128� 80� 80

GD in vitro Tube R2 7T G1D;G2D;G3D;G4D 514 200 mm 64� 40� 40
GE in vitro Tube �t 7T G1E ;G2E ;G3E . . . ;G25E ð2400� 25Þ 100 mm 100� 64� 64
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for a direct comparison between the automatically
detected spots and the theoretically expected.

In vivo: Two different sets of in vivo MRI were collect-
ed from two different machines having different field
strengths. Using one machine with a field strength of
11.7T, five MRI scans of rats were collected, which are
represented by GA in Table 1. Three of them were
injected intracardiac 1� 1:5 h prior to the scan with rat
mesenchymal stem cells (MSCs) that had been labeled
with micron sized iron oxide particles (MPIOs) to a level
of �14 pg iron per cell. This transplantation scheme
delivers cells to the brain—an intravenous injection
would deliver cells only to the liver and lungs. Two
additional rats were not injected at all. Using another
machine with 7T, two further brain MRI scans of rats
were collected, similarly previously transplanted with
MPIO labeled MSCs. GB represents these two scans in
Table 1. The rationale behind collecting these two differ-
ent in vivo sets was to be able to validate the generaliza-
tion and robustness of our learned algorithm against
potential variations arising from different imaging sys-
tems. Note that a different amount of MSCs were injected
in different rats to achieve further variations in the data.
All MRI were 3D T2*-weighted gradient echo. Further
details regarding cell labeling, cell transplant, in vivo
MRI and histology are in Supporting Information.

Machine Learning Methods

In machine learning, a classification approach maps a
real-world problem into a classification task where two
or more entities (classes) are to be intelligently distin-
guished from each other (see (20) for basic details). For
example, classifying potential candidate regions in MRI
as spots or nonspots will also be a classification task.

In the context of this work, classification paradigms
can be categorized into three fundamental paradigms. In
the first paradigm (P-1), discriminating information is
extracted from the images using a predefined approach
that is designed by an expert based on intuition and
experience. This information may be in the form of a
numeric array of values known as features. For each
image, such features along with their ground truth classi-
fication labels are then forwarded to another algorithm
called classifier or classification technique which learns
to distinguish between the classes. A classifier can be
learned mathematical functions, set of if-then rules, and
soforth.

In the second paradigm (P-2), the feature representa-
tions are not manually designed by an expert but rather
automatically learned from the data. Generally, both, fea-
ture representations and the classifiers are learned auto-
matically in a single unified framework. Many neural
network-based approaches fall into this category which
can take image datasets directly as input, along with the
labels, and learn a classification model.

In a third classification paradigm (P-3), the model can
be learned in the same manner as in P-1 or P-2. The dif-
ference here is that learning the model requires more
than just the given task’s data (MRI data in this case).
Available labeled data for other tasks such as face recog-
nition, that may not be directly related to the given task,

is exploited using a transfer learning approach. This
approach is useful when collecting large scale annotated
data is challenging.

The general architecture of this study and the differences
between the ML paradigms are summarized in Figure 2.
Candidate regions X ¼ f[xign

i¼1 are located and extracted
from an MRI scan G using the approach proposed in this
study. Each candidate region xi may or may not contain a
spot. Therefore, all candidate regions in X, along with their
manual ground truth labels Y ¼ f[yign

i¼1; yi 2 f1;0g, are
then forwarded to each of the three machine learning para-
digms for learning a model M. Depending on the paradigm,
this model may be based on a set of if-then rules, mapping
functions, a sequence of convolutional filters, and soforth.
For example, in the context of convolutional neural network
(CNN), the model M can take a candidate region as an input
and apply a sequence of learned convolutional filters and
transformation functions to finally output a value that either
describes the candidate region as a spot or a nonspot. Thus,
once M is learned, the proposed approach can automatically
locate, extract and detect spots in any unseen MRI.

Candidate Generation Using Superpixels

The first challenge in this research is to define a candi-
date region. Processing each pixel as a candidate region
can result in a huge computational burden. We
addressed this issue by extracting superpixels (32) as
classification units from each MRI scan (15). A super-
pixel technique groups locally close pixels with similar
intensities into a single unit. As spots are usually darker
than their surrounding, they are characterized as super-
pixels with lower average intensity than the surrounding
superpixels. Based on this idea, a novel set of features
based on the superpixel intensities, was designed. Exper-
imental results show that these features provide superior
performance for spot detection compared to the approach
in (14). However, this approach has the following limita-
tions: (A) The accuracy of the approach was dependent
on the preciseness of the superpixel algorithms. (B) The
approach assumes a superpixel based model for a spot in
terms of its depth across consecutive MRI slices. This
does not hold true for all spots in different MRI settings.

The strategy adopted in this article is resilient to
imprecisions in the superpixel extraction algorithms.
Based on each superpixel unit, a representative patch is
extracted from the MRI scan as explained in Figure 3.
Each patch is then taken as a candidate region and
undergoes a feature extraction process. The approach is
model-free and imitates the strategy adopted by a human
labeler. All candidate patches are first detected in 2D
MRI slices and then neighboring patches detected in
consecutive slices are connected without imposing any
restriction on their depth in 3D.

The spatial location of each patch in MRI is also
recorded. Consequently, these extracted patches are for-
warded to the machine learning algorithms as input data.

In summary, the first two paradigms focus on how to
accurately and automatically distinguish spot patches
from nonspot patches. Then using the 3rd ML paradigm,
i.e., transfer learning, we investigated how the best
approach out of the first two paradigms could be adapted
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to achieve better results despite using very limited train-

ing data.

RESULTS

Spot Detection with Fixed Designs (P-1)

This is the traditional and most widely adopted para-

digm in computer vision and pattern recognition based

studies (14,15). In this article, an elaborate set of feature

extraction methods are utilized that extract shape, inten-

sity, texture, and context information about the entities

in the candidate patches. In the attached Supporting

Information Figures S2–S4 present a brief explanation on

how hand-designed features can be extracted specifically

for the task of capturing spot appearance in MRI.
Extracted features are finally concatenated to form a

feature vector for each candidate patch xi. From this fea-

ture vector, the most useful features are selected and the

irrelevant features are eliminated using a feature selec-

tion module that employs a correlation based feature

selection algorithm (21). These feature vectors along

with their corresponding labels are then forwarded to

tune a classifier. In this study, a diverse group of classi-

fiers such as probabilistic (Naive bayes), functional

(Multilayer perceptron[MLP]), and decision tree (Ran-

dom Forest), are utilized (see (22) for details).

Spot Detection with Learned Designs (P-2)

Based on expert intuition and experience, features

extracted in P-1 can be subjective. Therefore, the key

goal of P-2 approaches is to automatically learn the most

optimal spot feature representation from the data. Neural

networks are a well-known example of P-2 approaches.
Deep CNN (16,23) have been highly successful in

many image-based ML studies. Unlike P-1, these features

are hierarchically learned in multiple layers in an auto-

matic fashion and not hand-crafted by experts. Consider,

M ¼ f ðÞ as an overall classification model learned by a

P-2 approach. In deep neural networks, f can be decom-

posed into multiple functional layers:

f ðÞ ¼ ðfu8fðu�1Þ8fðu�2Þ8 . . . 8f1Þ: [1]

Each function, fj, j 2 ½1;u�, can represent a (a) convolu-

tional layer, (b) nonlinear gating layer, (c) pooling layer,

(d) full-connected layer (see (16,23,24) for more details).

For a given task, weights for these convolutional filters

are learned automatically using the training data.

FIG. 2. (Top) Basic architecture: Three dif-

ferent ML paradigms P-1, P-2, and P-3
are explored to learn a spot detection
model. (Bottom) Fundamental design

phase differences between the three ML
paradigms.

FIG. 3. (Left) Illustrating the generation of candidate regions. For each superpixel a candidate patch is extracted. The darkest pixel in

the superpixel acts as the center of the patch. (Right) A mosaic of several 9 � 9 patches extracted from an MRI slice. It can be seen
that all patches have a dark region in the center representing a spot in a 2D slice.
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Different architectures of a CNN are created by utilizing

different number of layers and also by sequencing these

layers differently. CNN architectures also vary depending

on the choice of the nonlinear gating function. Filter

sizes for convolutional layers are also determined

depending on the application at hand. Well-known CNN

architectures such as AlexNet (23) or GoogLeNet (25)

cannot be utilized for spot detection in MRI. Therefore, a

new CNN architecture, specifically designed for spot

detection in MRI, is proposed here. The proposed CNN

architecture has three composite layers and 1 fully con-

nected layer (see Supporting Information Fig S5). Each

composite layer consists of a convolutional layer and a

gating function. Note that in a conventional CNN archi-

tecture, a pooling layer is also used which reduces the

dimensionality of the input data. However, a pooling lay-

er is not utilized in this architecture due to the small

size of the input patches (9 � 9). Using a pooling layer,

in this context, may result in the loss of valuable infor-

mation which may be essential to be utilized by the next

layers. Further, a gating function is usually added for

introducing nonlinearity into a CNN. Without nonlinear

gating, a CNN can be seen as a sequence of linear opera-

tions which can hinder its ability to learn the inherent

nonlinearities in the training data. In conventional neu-

ral networks, a sigmoid function or a hyperbolic tangent

function was generally utilized for this purpose. Howev-

er, in recent studies, utilizing ReLU (Rectified Linear

Units) has shown significantly superior results for this

role (23). Therefore, the proposed architecture uses ReLU

as a nonlinear gating function.
Further customizing to the task at hand, the sizes of

all the convolutional filters were kept small. However,

their numbers were kept high. The goal was to provide a

higher capacity to the CNN architecture for capturing a

diverse set of local features of a patch. Filter sizes and

dimensions of resulting feature maps can be seen in Sup-

porting Information Figure S5. For any task i, the pro-

posed model (CNN architecture) can be written as

M ¼ ðg8Lfc8b8C
i3
8b8C

i2
8b8C

i1Þ: [2]

where c represents a standard softmax function that can

be applied to the output of the fully connected layer Lfc.

b denotes the nonlinear gating function and Cik repre-

sents the convolutional layer in the composite layer k.

Performance of the Two Paradigms

Experiments were performed to answer the following

main questions: (1) Which of the two ML technique

results in the best detection accuracy for in vivo spots in

MRI? (2) How does the best approach perform on in vitro

evaluation studies? (4) Can a ML approach learned on in

vivo data be tested for spot detection on in vitro data?

(5) How is the performance affected if the MRI is con-

ducted at low resolution? (6) Is the proposed approach

robust to the differences in MRI machines in terms of

field strength, make and model etc.? Importantly, it is

also of interest to investigate how the theoretically com-

puted number of spots for in vitro MRI scans compares

with the automatically detected spot numbers.

In Vivo Evaluation Studies

In this study, the spot classification performance of a

diverse set of approaches was evaluated using the two

sets of in vivo MRI scans, i.e., GA and GB. First, experi-

ments and results are discussed for GA that has five dif-

ferent MRI scans obtained from one MRI machine and

labeled by one expert. Three of these in vivo scans con-

tain spots that were manually labeled by experts whereas

the remaining two were naive. Six combinations of test-

ing and training pairs are created such that two scans

are always present in the testing set of each pair, where

one of the scans is a naive and the other contains spots.

The remaining three out of the five scans are used for

training the ML algorithms. Area Under the Curve (AUC)

is utilized as a standard measure for classification accu-

racy. Experimental results for all the algorithms are

listed in Table 2.
It was observed that the best results were achieved by

a CNN, with a mean accuracy of 94.6%. The superior

performance of CNN can be mainly attributed to its abili-

ty to automatically explore the most optimal features

using training data rather than relying on hand-crafted

features utilized in traditional machine learning. Second,

CNN learn features in a deep hierarchy across multiple

layers. Recent research shows that such a hierarchy pro-

vides a superior framework to CNN for learning more

complex concepts, unlike traditional machine learning

approaches which learns in a shallow manner ((23–25).
The second best results were observed with the simple

MLP approach when it takes the carefully designed,

handcrafted features as an input, rather than the raw

data X. This MLP can be viewed as a mixed paradigm

approach (P-1/2). However, the deep learning CNN that

inherently extracts hierarchical features without using

any hand-crafted features resulted in the overall best per-

formance. CNN detected a total of 5246, 5719, and

16,048 spots in the three labeled rats of GA.

Table 2
Experimental Comparison of In Vivo Spot Detection Performance Using P-1 and P-2

Algorithms J1 J2 J3 J4 J5 J6 Means

P-1 Random Forest 94.0 86.9 95.3 94.1 86.0 94.7 91.8 6 4.2
Naive Bayes 82.9 81.8 84.3 84.1 80.1 83.7 82.8 6 1.6

P-2 CNN 96.4 92.3 96.1 96.4 91.2 95.0 94.6 6 2.3
MLP 91.1 85.2 90.9 91.4 84.2 90.3 88.9 6 3.3
MLP (P-1/2) 93.9 89.4 95.8 95.4 90.0 95.7 93.4 6 2.9

Means 91.7 6 5.2 87.1 6 4.0 92.5 6 5.0 92.3 6 4.9 86.3 6 4.5 91.9 6 5.0

The best performance on each testing set is represented in bold.
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Probabilistic Naive bayes, using P-1, shows the worst
detection performance with an average accuracy of
82.8%. This can be because naive bayes assumes com-
plete independence between the features which in many
practical problems may not be true. Further, it can be
seen in Table 2 that J2 and J5 testing sets proved to be
the most challenging with low mean accuracies of 87.1%
and 86.3%, respectively, from all algorithms. Dataset J4

resulted in the overall best performance with mean accu-
racy of 92.5%. When investigating this, it was found that
both J2 and J5 contained MRI scan GA1 in their test set
accompanied with a different naive scan. It was seen
that the labeled patches in GA1 were significantly more
challenging in terms of morphology and intensity than
those extracted from other scans.

The best two approaches, i.e., MLP (P-1/2) and deep
CNN (P-2), were then further compared using another set
of in vivo scans i.e., GB. This data was collected from a
different machine having a different field strength and
was also labeled by a different expert. In this study, all
the previous five scans of GA were used for training both
approaches (creating a larger training set), and then the
learned spot detection models were tested on the in vivo
scans in GB ¼ fGB1;GB2g. Note that despite the differ-
ences in machine, its field strength, and also the labeling

expert, CNN performed best with an accuracy of 97.3%
whereas the mixed paradigm MLP (P-1/2) achieved
95.3%. We show the ROC curves for this test in Figure

4. In GB, the total number of spots detected by CNN was
4930.

In Vitro Evaluation Studies

It can be observed that CNN yields the best result on the
in vivo datasets despite the simplicity of its approach. In
this study, its performance is evaluated on the in vitro
data in set GC and GD. Its performance is first tested on GC

that has four in vitro MRI scans each with a 100mm reso-

lution creating a 3D matrix of ð128� 80� 80Þ. Using these
four scans, three different testing and training pairs were
developed. Each testing and training pair has two MRI
scans. The naive MRI scan was always kept in the test set,

thereby generating three combinations with the remaining
other sets. It was observed that CNN performed with a
mean accuracy of 99.6% on in vitro scans. The individual
ROC plots for these tests are shown in Figure 4.

A different study was then conducted to see the degra-

dation in performance when each of the four in vitro
scans are obtained with a much lower resolution of 200m

m creating a matrix of ð64� 40� 40Þ. Such a study is
desirable as in some practical applications it may be
more convenient to rapidly obtain an MRI at a lower res-

olution, particularly in human examinations. Using the
same procedure as before, three different testing and
training pairs were created. It was noted that the mean
performance decreased to 86:6%65:6. However, it was

also seen that when the number of learning layers for
CNN was increased to 5 (4 composite and 1 fully con-
nected) the performance improves to 90:6%67:1. The
individual improvements on all the three sets are shown

in Figure 4.

Comparison with Theoretically Computed Spot Numbers

A comparison between the automatically detected num-
ber of spots with the theoretically computed number of

spots was conducted using 25 in vitro MRI scans of set
GE. This is an important experiment as it allows a direct
comparison with the actual number of injected spots. All
the available data from GA to GD was used for training a
CNN and then the trained CNN model was used for test-

ing on these 25 scans in set GE. Each scan is expected to
contain about 2400 spots. However, it is important to
understand that due to the use of manual procedures,
the actual number of spots may vary about 2400. The

results of automatic spot detection are tabulated in Table
3 under different MRI conditions.

Model Generalization Studies

In this section, the generalization ability of the proposed

approach is determined by testing it in different possible
practical scenarios. In practice, in vivo scans might be
collected with different MRI machines at different labo-
ratories using different field strengths. GA and GB repre-

sent two such in vivo datasets. As discussed before in
the in vivo evaluation studies, and as shown in Figure 4,
the CNN based approach demonstrates robustness to

FIG. 4. (Top) Receiver operating characteristic (ROC) curve is
shown for results obtained on 3 in vitro scans (100 micron resolu-

tion), with inset indicating individual percent accuracies (AUC) for
each data set, (Middle) ROC curves for a generalization test using

in vivo scans, with inset indicating individual percent accuracies
(AUC) for each approach, (Bottom) Comparing accuracies on low
resolution MRI scanning for in vitro data (200 micron resolution).
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such variations and achieves 97.3% accuracy despite

such differences. Further, it is necessary to know how

the performance would be affected if in vivo data is used

for training but the in vitro data is used for testing.

Therefore, an experiment was conducted where a CNN

was trained using GA (in vivo) and then tested it using

GC (in vitro). CNN still performed with an accuracy of

96.1%. An in vivo and in vitro MRI slice with automati-

cally detected spots is shown in Figure 5.

Spot Detection with Transfer Learning (P-3)

The success of deep learning methods for a specific

application depends on the availability of large scale

annotated datasets. Unfortunately, in many applications,

especially those related to medical imaging and radiolo-

gy, obtaining a large scale annotated (e.g., labeled) data-

set can be challenging. Therefore, the focus here is

devising a strategy to improve the accuracy of a CNN

trained only on limited samples.
The concept of transfer learning (24,26), or inductive

transfer, entails the transfer of knowledge from a source
task (e.g., document classification) to a target task (e.g.,

voice recognition). In this article, transfer learning is

exploited in the context of stem cell detection in MRI

data (i.e., spot detection), where there is scarcity of

labeled training data. Here, transfer learning is imple-

mented via CNNs and involves transplanting network

layers from one CNN (derived from the source task) to

another (spot detection—known as the target task). The

proposed approach is explained below and the basic

architecture of this approach is shown in Figure 6.
First, in addition to the target data, i.e., the given MRI

data X, the data of unrelated 20 different real world

source entities were collected from publicly available

databases (27). These include images of entities such as

soccer ball, cherry, egg, cat, bananas, and soforth. (see

Supporting Information Fig. S6 for all names). The data

of each source i is denoted as Xi where i 2 f1; 2; . . . ;20g.

Table 3
Automatically Detected Number of Spots in Five Samples Under

Five Conditions

Condition Tube 1 Tube 2 Tube 3 Tube 4 Tube 5

TE 10 2147 2272 2474 2152 2270

TE 20 2608 2750 3039 2644 2660
TE 30 2844 2993 3272 2809 2909
TE 10 (Low SNR) 1982 2023 2247 1949 2014

TE 20 (Low SNR) 2419 2563 2794 2401 2445

The theoretically expected number of spots in each sample is

2400.

FIG. 5. Automatic spot detection and visualizations: (left) in vitro, (right) in vivo.
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Second, the data from these source tasks were geomet-

rically transformed to ensure compatibility with the tar-

get task patches. Therefore, the images in Xi for each

source i were transformed to 9 � 9 patches. This trans-

formation is functionally denoted as TðXiÞ. It was

observed that many of the down-sampled images display

a spot-like pattern (as shown in Supporting Information

Fig. S7). However, these spots exhibit differences in their

shape, size, and intensity and, therefore, present

completely different distributions.
Third, for each Xi, a two-class dataset Xib ¼ fTðXiÞ;T

ðBgÞg was developed. TðXiÞ consists of samples of one

class (positive), while TðBgÞ consists of samples of the

second class (negative). Images for the negative class,

Bg, were selected using a popular search engine by

querying the following entries: (a) texture and patterns,

(b) sky and ocean, (c) grass. It was observed that the

transformed images of these categories show visually

rough or uniform characteristics similar to that of the

nonspot patches. Collectively, all the obtained datasets

can be denoted as X ¼ ½X ;X1b;X2b; . . . ;X20b�.
Fourth, based on each two-class dataset Xib, a binary

classification task was defined. The goal of this task was

to learn a CNN Mi that can distinguish between patches

in TðXiÞ and TðBgÞ. Generally, to learn a CNN, the

weights in all of its layers are first randomly initialized.

Let this be denoted as MR. Given a dataset Xib, these

weights are iteratively changed. This learning can be

functionally denoted as Mi ¼ HðMR;XibÞ.
Consequently, a set of 20 different source CNNs f[Mig20

i¼1

can be learned. Using this approach, a CNN M ¼ HðMR;XÞ
can also be learned to differentiate between spot and non-

spot patches. Collectively, the set of learned CNNs can be

denoted as M ¼ ½M ;M1;M2; . . . ;M20�. Conversely, CNNs

can also be learned without using a randomly initialized

network. For example, a CNN Mxi that can distinguish

between spot and nonspot patches can also be learned, i.e.,

Mxi ¼ HðMi;XÞ. This means, that the weights already

learned for a source task i are transferred to initialize anoth-

er CNN whose goal is to learn to distinguish between spot

and nonspot patches (target task). This transfer provides a

more useful starting point in learning a target CNN and,

thus, results in better generalization of the learned CNN.

However, previous research shows that transferring from

some source tasks may be significantly more beneficial than

that from others (24).
Therefore, as a fifth step, the proposed approach auto-

matically determines which source CNN would be the

most beneficial for transfer. There is no previous litera-

ture that shows how to automatically rank the available

source CNNs based on their predicted benefit to the tar-

get task. Note that this is not a learning problem where

an objective function can be stated and then optimized

using the training data. Instead, it requires a zero-shot

prediction which is a challenging task. The approach

adopted here automatically measures the potential use-

fulness of each source CNN, Mi, by measuring its charac-

teristic Ei prior to conducting transfer, where:

Ei ¼ flJi þ ð1� lÞUig: [3]

Ji measures how different is the learned information

(CNN weights) of a source CNN Mi from the target CNN

M whereas Ui measures how discriminating is a source

CNN Mi for the target task. For details on computing Ji

and Ui, see the Supporting Information on source CNN

selection.
To the best of our knowledge, this is the first attempt

at ranking source CNNs for a given target task. Note that

k is simply a weighting parameter. In this study, l ¼ 0:8

was used in all the experiments. Finding an optimal val-

ue of k is not the focus here; however, a more optimal

value may result in even better performance.
As a final step, either the top CNN Mi or a group of

the top q 2 f2; . . . ;20g sources can be selected for trans-

fer. The selected top q sources makes a group Z � M .

When using a group, the predictions of the multiple

models are fused using a standard probabilistic approach

by utilizing the corresponding Ei for each source CNN Mi

as a prior in a Bayesian formulation.

Performance of P-3

In this section, experiments were conducted to answer

the following questions: (1) Does the spot detection bene-

fit from transfer learning when the annotated training

data is very limited? (2) Is the ranking of source CNNs

prior to transfer, a beneficial procedure? (3) Why is it

FIG. 6. Architecture of the transfer learning based approach.
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useful to combine information from CNNs learned from
different sources?

In Figure 7a–c, using all of the three labeled datasets
of GA, three different testing scenarios are shown. On the
x-axis, the amount of training data was varied and on
the y-axis the performance of differently trained CNNs
was observed. The baseline method is a CNN that did
not undergo any transfer learning and only used the tar-
get data for training. The remaining two CNNs under-
went transfer learning with the best ranked ðRS1Þ and
worst ranked ðRS20Þ sources, respectively. We observed
that the performance gain due to transfer from the best
source is significantly higher when the training data
from the target dataset is small. For example, in Figure
7b, using only 5% of the training data, the accuracy sub-
stantially improved from 52% to nearly 78% on the test
set. Such an increase is highly encouraging in the clini-
cal arena where there is scarcity of data and, where, the
proposed approach would be highly relevant.

Next, we noted that the source which was ranked the
“best” significantly outperforms the source which was
ranked the “worst.” Thus, our strategy to rank each source
prior to invoking the transfer learning paradigm is clearly
of importance. Further, we observed that choosing a group
of top ranked CNNs can be more useful than simply

choosing one. In one scenario, the proposed approach mis-

takenly ranked one source as the second best as shown in

Figure 7d. However, it can be seen that the decision

weighting of multiple sources resulted in a performance

that was significantly better than the worst source when

there is limited target training data. In fact, at many points

along the x-axis, we find that the resulting performance

was higher than the other two sources as well.

DISCUSSION

Automated spot detection presents a set of unique chal-

lenges that were carefully considered while designing

computer vision and machine learning-based approaches.
First, for thorough evaluation and training, an annotat-

ed MRI database needed to be developed. Therefore, a

diverse database consisting of 40 MRI scans was assem-

bled and more than 19,700 manual labels were assigned.
Second, given an MRI scan, a set of candidate regions

needed to be extracted effectively. Each candidate region

must represent a region in MRI that can potentially con-

tain a spot. This article discussed how a superpixel based

strategy can be designed to extract relevant regions. The

proposed approach has clear advantages over some tradi-

tional alternatives.

FIG. 7. Source ranking for transfer learning. a–c: Demonstrate the benefit of ranking source CNNs before transfer when the training data

is sparse. d: Represents the case where information fusion provides robustness to ranking mistakes.
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Third, spots have high intra-class variation due to

their diverse appearances in terms of shape and intensi-

ty. Therefore, for machine learning approaches to work

effectively, a set of robust feature descriptors needed to

be extracted from the candidate regions. A novel CNN

architecture was designed to automatically extract the

most useful spot features. The performance of these fea-

tures was systematically compared against those

extracted by appropriating hand-crafted feature extrac-

tion techniques. Results show that automatically learned

features performed better with an accuracy of up to

97.3% in vivo.
Fourth, machine learning approaches typically require

a large training dataset for accurate learning. However,

in applications in the medical domain, it can be chal-

lenging to obtain a large volume of training data. There-

fore, this article explored how automatic spot detection

can be performed using a limited amount of training

data. A novel transfer learning strategy for CNNs was

developed, where the best source task is automatically

selected from an ensemble of many tasks.
It is important to note that MRI-based cell tracking has

remained largely phenomenological for its history, starting

in the late 80s. Moving forward, automated spot detection

for MRI-based cell tracking would prove useful across a

broad spectrum of research tracks. For example, Walczak

et al., infused neural stem cells via the carotid artery in an

effort to target stroke lesions (28). High resolution in vivo

and in vitro MRI appear to show small clusters of cells,

perhaps even single cells, distributed in the brain as a

function of the intervention. Only qualitative analysis was

performed on this imaging data; automated spot detection

would have enabled quantitative metrics of cell numbers.

Another application would be for the evaluation of trans-

planted islets encapsulated with iron oxide nanoparticles

within alginate microspheres. These imaging features, typi-

cally are individual hypointensities, examples being (29)

and (30). In both cases, only qualitative or semiquantita-

tive data were compiled, without a direct enumeration of

transplanted and surviving grafts. A last example would

be for enumeration of kidney glomeruli in conjunction

with the use of cationized ferritin as a contrast agent (31).
The general use of MRI-based cell tracking and this spe-

cific approach to quantifying this data has some limita-

tions. Still, MRI of magnetically labeled cells only detects

the iron, not the cell itself, and this method is still unable

to distinguish live cells from dead cells. Further, if more

than one cell generates a particular spot in the MRI, then

the calculated cell number would be inaccurate. In this

work, only 67% of spots were resultant from individual

cells, the other 33% from two or three cells. It remains an

open question as to how accurate an automated spot

detection algorithm for MRI-based cell tracking needs to

be to provide useful clinical information. However, we do

not feel that heterogeneous magnetic cell labeling is a sig-

nificant problem. Indeed, cells with more internalized

iron would have darker and larger spots on MRI, while

cells with less internalized iron would have lighter and

smaller spots. However, our automated quantification

algorithm can account for differences in spot size and

intensity to compensate for heterogeneous cell labeling.

CONCLUSION

In summary, this article presented a comprehensive

study on spot detection in MRI using ML approaches.

Challenges unique to spot detection in MRI were

highlighted. Novel approaches were designed for spot

detection using different ML paradigms and were then

experimentally compared. For this study, a new labeled

database of MRI scans was developed. Results show that

features that are automatically learned using a deep-

learning approach outperform hand-crafted features. It

was also observed that the transfer learning paradigm

can provide significant performance improvement when

the training dataset is small. Further, using deep CNNs,

the proposed approach achieved up to 97.3% accuracy

in vivo and about 99.8% in vitro.
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Additional Supporting Information may be found in the online version of
this article.

Fig. S1. a, b: Single cells within plane c) cell through plane (d, e) two cells
(f) 3 connected cells (g, h, i) showing cells bounded within blood vessels,
with some at bifurcations; scale bars are 25 ums. Cropped from images
with width of 300 um (no MPIO labeled MSCs were cropped from view).
Fig. S2. Similar to the concept of eigen faces (33), Principle Component
Analysis (PCA) was utilized to extract eigen spot shapes using all of the 9
3 9 spot patches in the training set. The top PCA component for the spot
patches obtained on three labeled rats in GA are shown here. An iteratively
increasing threshold is then applied on the values of these top PCA com-
ponents to extract different binary patches that are utilized as filters to cap-
ture the shape and intensity information on spot patches.
Fig. S3. Binary shape filters are obtained using the top PCA components
(shown in Fig. S2.). By iteratively increasing the threshold values from dark
to light intensities, PCA components can result in different binary shapes.
Domain experts agree that these binary filter patches represent many fre-
quent shapes of the actual spots. All these patches are rotated and trans-
lated to obtain a large set of different shape filters. These filters are
convolved with each candidate patch and the computed response is taken
as a feature. A large set of these responses comprehensively captures the
shape and intensity information of spot patches.
Fig. S4. Visual representation of context features for two context patches:
While learning the definition of a spot, it may also be useful for a classifier
to learn more about its surrounding context. Therefore, to capture the
appearance of the patch’s context, a larger patch of 21 3 21 was extracted
around the center of a candidate patch xi. Two well-known appearance
descriptors in computer vision were then used to extract features: (a) Histo-
gram of Gradients (HoG) and (b) Gist (34,35). A visual representation of
HoG for two context patches is shown here. Red lines here indicate the dif-
ferent directions of intensity gradients whereas the lengths of the lines
determine their magnitude.
Fig. S5. CNN architecture used in this work. The network takes a 9x9
image patch as input for a classification task i. Each composite layer Lk,
k 2 f1; 2; 3g, is composed of a convolutional layer Cik which produces the
feature maps Fik and a non-linear gating function b producing the trans-
formed feature maps Fik

b . After passing through the composite layers, the
net passes through the fully connected layer Lfc which produces the out-
put. The softmax function is then applied to the output. Note that in the
context of this work, this architecture represent the model M. The weights
of all the filters across its processing layers are learned using the training
data.
Fig. S6. Some convolution filters learned by the 2nd composite layers of
our deep learning approach. Usually, each filter acts as a neuron and due
to co-adaptation between a large number of such neurons, highly sophisti-
cated features are extracted that can potentially model spot shape, intensi-
ty, texture etc.
Fig. S7. Transformed, average images for different source datasets.
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