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Abstract. Due to recent advances in cell-based therapies, non-invasive
monitoring of in vivo cells in MRI is gaining enormous interest. However,
to date, the monitoring and analysis process is conducted manually and
is extremely tedious, especially in the clinical arena. Therefore, this paper
proposes a novel computer vision-based learning approach that creates
superpixel-based 3D models for candidate spots in MRI, extracts a novel
set of superfern features, and utilizes a partition-based Bayesian classifier
ensemble to distinguish spots from non-spots. Unlike traditional ferns
that utilize pixel-based differences, superferns exploit superpixel averages
in computing difference-based features despite the absence of any order in
superpixel arrangement. To evaluate the proposed approach, we develop
the first labeled database with a total of more than 16 thousand labels
on five in vivo and four in vitro MRI scans. Experimental results show
the superiority of our approach in comparison to the two most relevant
baselines. To the best of our knowledge, this is the first study to utilize
a learning-based methodology for in vivo cell detection in MRI.

1 Introduction

As a promising alternative to organ transplants in humans, cell transplant-based
therapies have recently gained enormous interest in medical research. However,
its long term success in humans has not been proven, where one key obstacle is
the ability to non-invasively monitor the transplanted cells via MRI, and mea-
sure both transplant efficiency and long-term cell repopulation. Overcoming this
obstacle is equivalent to achieving two goals: (i) display the transplanted cells in
MRI scans under in vivo conditions, and (ii) perform comprehensive quantita-
tive analysis on the behavior of transplanted cells. To display transplanted cells
in MRI scans, cells are injected with an MRI contrast agent prior to or during
imaging [8]. This has been demonstrated in many in vivo studies, e.g., [7, 2].

While such cell studies use efficient magnetic particles and high-resolution
MRI, they stopped short of quantification and hence cannot accomplish the sec-
ond goal. For comprehensive quantitative analysis, manual enumeration of cells
in MRI is laborious, subjective, and limited in capturing all patterns of cell be-
haviors. Further, current commercial tools can only assist humans in conducting
manual analysis. Therefore, there is a need to automatically and accurately per-
form such quantitative analysis of cells or spots. Note that we use cell or spot
interchangeably since a cell visually appears as a spot in MRI scans.
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Recognizing this need, a recent study utilized a simple threshold-based strat-
egy to automatically detect cell spots in 2D MRI images of a rat’s brain [4]. How-
ever, they did not quantitatively report the spot detection accuracy against any
ground truth. In contrast, supervised machine learning-based solutions are more
robust and have recently shown enormous success in a wide range of medical
applications. Unfortunately, there is no prior work that utilizes learning-based
approaches for automatically detecting in vivo spots in MRI. In a related area
of 2D microscopic image analysis, authors in [9] conducted a comparative study
of various machine learning approaches in detecting spots. The study concluded
that a Haar-based Adaboost approach performs the best on their data. Neverthe-
less, in vivo 3D MRI scans present more challenging in nature than florescence
based microscopic images of [9]. E.g., MRI scans also contain spot-like tissue’s
structural entities in the image background that are absent in microscopic im-
ages. Secondly, based on the size and shape of the spots in [9], HAAR-like features
are extracted from a fixed sized mask that slides on a 2D image, which may not
work for our 3D spots due to the large size and shape variations of spots.

Moving towards accomplishing the second goal, this paper presents the first
comprehensive study on learning-based detection of cell spots in MRI scans.
Our cell detection framework has novelty in terms of spot modeling, feature
representation, and classification. Our approach considers spots as 3D entities
and represents its general structural model using superpixels. We then extract a
novel set of “superferns” features and finally classify it using a partition-based
ensemble of Bayesian networks. Experimental results show that our proposed
approach performs significantly better than previously related approaches.

In summary, this paper makes the following contributions: (i) It proposes
a novel superpixel-based 3D model to characterize cellular spots and that can
potentially be used in other medical problems. (ii) It introduces the superferns
feature that exploits superpixel-based representations and is more discriminative
than traditional fern features. (iii) It demonstrates how a partition-based ensem-
ble learning can be effectively utilized for MRI spot detection. (iv) It presents a
labeled publicly available database of five in vivo and four in vitro MRI scans,
and a total of 16, 298 spot labels for quantitative evaluation.

2 Proposed Approach
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Fig. 1. Spot variations in diverse region contexts.

The cell/spot detection prob-
lem in MRI scans has unique
challenges, where a number of
questions should be carefully
considered prior to algorithm
design. First, since a spot is
essentially a 3D entity in an
MRI cube, how can we model
its three dimensional characteristics? Second, a spot is also a small group of
dark pixels with varying shapes and sizes. What is the basic unit within an MRI
cube (e.g., one, two, or N pixels) for which the two-class classification decision
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Fig. 2. Our approach has four main modules. Blue, red, and black arrows are the
processing flow during the training stage, testing stage and both stages, respectively.

can be made? Third, there is a huge number of candidate locations. So, how to
construct discriminative and efficient feature representation for spots? Fourth,
the appearance of a spot varies relative to its local and regional neighborhood
(Fig. 1). How to make learning robust to these variations should be addressed.
Considering these challenges, we design our technical approach as in Fig. 2.

2.1 Spot Modeling

Visually, a cellular spot S appears as a cluster of dark 3D pixels with high varia-
tions in its 3D shape and intensity, wrapped inside a cover of background pixels
as conceptually illustrated in Fig. 3. In this work, we call the small group of
dark pixels as a spot’s interior I, and their local neighboring pixels in the back-
ground as the exterior E of a 3D spot. This model is consistent with the manual
labeling of spots by domain experts, who inspect the cross-sections of spots in
consecutive 2D MRI slices, and look for a small region (interior) that is darker
than its neighboring pixels (exterior). Furthermore, the human visual system
can also adjust for the amount of relative darkness based on the characteristics
of the specific brain region containing that spot. E.g., Fig. 1 shows that the way
to classify spots in region A and B might be different, and one spot in C is com-
paratively larger. Thus, in addition to modeling a spot with its interior/exterior,
we also model the specific region it belongs to, termed region context R.

2.2 Model Instantiation via Superpixel

Given the conceptual spot model S = {I, E,R}, we now describe how to de-
fine I, E, and R for a spot, by three steps. Since no spot should be outside
the brain region, the first step is to perform brain segmenation in every 2D
MRI slice with basic image processing techniques. The second step is to de-
fine I and E by applying 2D superpixel extraction [3] to the segmented brain
region of each slice. A superpixel is a group of N neighboring pixels with sim-
ilar intensities, i.e., Vz,u = {xi, yi, z}Ni=1 where u is the superpixel ID in slice
z. In general superpixels can tightly capture the boundary of a spot’s interior;
however, some imprecise localization is also expected in practice (Fig. 4). After

extraction, we denote M = {Vz,u}L,U
z=u=1 as the set of all superpixels in the 3D
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Fig. 3. Conceptual Spot Model
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Fig. 4. Superpixels capture a tight (a) or
loose (b) boundary of a spot’s interior.

brain region, where L is the number of slices and U is the number of super-
pixels per slice. Due to the exclusiveness of the interior and exterior of spots,
we have M = I ∪ E where I and E are the set of all interior and exterior su-
perpixels, respectively. With that, for a spot S with length l in z-axis, we for-
mally define its interior as I = {Vz,u, · · · , Vz+l−1,u | V ⊂ I} and the exterior as
E = {Vz−1,., Vz,ū, . . . , Vz+l−1,ū, Vz+l,. | ||(m(I)−m(V )|| ≤ τ, V ⊂ E}, where m()
is the mean of a set, τ is the maximum L2 distance between the centers of a spot
and an exterior superpixel, and Vz−1,. and Vz+l,. are superpixels in two adjacent
neighboring slices. To define the region context R, in the third step we extract

very large superpixels {Ṽz,u}L,Ũ
z=u=1, where the number of superpixels Ũ � U , by

assuming that large superpixels are representative of the regional appearance.
Thus, we define the region context of a spot as R = {Ṽz,u | m(I) ⊂ Ṽz,u}, which
is the large superpixel enclosing the spot center m(I). Consequently, this pro-
cess allows each superpixel to act an an interior of a potential spot and therefore
naturally generates a large number of candidates.

The superpixel-based 3D spot model has a few advantages. First, it addresses
the issue of unit, by going beyond pixels and using superpixel-based feature
extraction and classification. Second, it substantially limits the total candidate
spots to be tested, since the candidates are nominated via superpixels rather
than pixels. Note that we may extend our 3D spot model by directly using 3D
supervoxels instead of joining 2D superpixels. We choose the latter in this work
due to its superior reliability than well-known 3D supervoxel methods.

2.3 Superferns Feature Extraction

With an instantiated spot model S = {I, E,R}, the next step is to extract a
discriminative and efficient feature representation. Since a spot generally has
darker interior than its exterior, it makes sense to define features based on the
computationally efficient intensity differences between pixels in the interior and
exterior. Difference-based fern features have shown great success in computer
vision [5]. Ferns compute the intensity difference between a subject pixel and
another pixel with a certain offset w.r.t. the subject pixel. Using the same offset
in different images leads to feature correspondence among these images.

For our problem, the spot center m(I) can be regarded as the subject pixel,
and its intensity is the average intensity of all interior pixels m(G(I)). We then
randomly generate h 3D offsets O = {oi}hi=1 with a uniform distribution, whose
center is the spot center and radius is τ . Finally, the feature set is computed
as F = {fi}hi=1, where fi = G(m(I) + oi) − m(G(I)). While fi is efficient
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to compute, G(m(I) + oi) is the intensity of a single pixel, which can be noisy,
specially in in vivo MRI and lead to low discriminability of fi. Thus, it is desirable
to replace it with the average intensity of all pixels within an exterior superpixel.
However, the exterior superpixels around different spots have no correspondence,
and, as a result, fi for different spots also have the correspondence issue.

(a) (b)

Fig. 5. The ferns (a) and superferns (b).

To address this issue, we present
an approach to exploit the average
intensity without losing correspon-
dence information. The new feature,
termed as “superferns”, is similar
to F except it replaces the single
pixel-based intensity with the aver-
age intensity of the superpixel (Fig. 5 (b)), i.e., F ′ = {f ′i}hi=1, where f ′i =
m(G(V ))−m(G(I)), ∀ m(I) +oi ∈ V . Note that it is possible to have the same
feature at two different offsets due to them being in the same superpixel, i.e.,
f ′i = f ′j . This is not an issue because this equality may not be true for other
spots, hence the feature distributions of f ′i and f ′j are not the same, and they
contribute differently to the classification.

Features are also needed for the region context R. Given its role of supporting
region-dependent classifiers, we find that simple features work well for R, e.g., the
mean and standard deviation of pixel intensities inR, Fr = (m(G(R)), σ(G(R))).

2.4 Partition-based Bayesian Classification

Having computed the feature Fs = (F ′, Fr) for a set of spots and non-spots, we
now present our approach to learn an accurate two-class classifier. Since different
local regions have different appearance as shown in Fig. 1, we parition the brain
region into N0 partitions, learn a set of N0 classifiers each for one partition,
and fuse them via a probabilistic Bayesian formulation. Specifically, for any spot
candidate S, its probability of being a spot is

P (Fs) =

N0∑
i=1

P (Fs, ri) =

N0∑
i=1

P (Fs|ri)P (ri), (1)

where ri represents the ith partition, P (ri) is the probability of S belonging to
ri, and P (Fs|ri) is the conditional probability of being a spot at partition ri.

We learn P (ri) using Gaussian Mixture Models (GMM) with random ini-
tialization. By collecting the Fr for all training samples, we perform GMM to
estimate N0 component Gaussian densities (using Aikake Information Criterion),
each considered as one partition. During the testing, {P (ri)}N0

i=1 is obtained by
evaluating Fr of the testing sample w.r.t. each component densities.

In order to learn P (Fs|ri), we group all training samples into N0 groups based
on their respective maximum {P (ri)}, and train the P (Fs|ri) using the standard
implementation of Bayesian Networks in [1], where the maximum number of
parent nodes is set to 4. During the test, for a testing candidate spot, GMM
enables a soft partition assignment, and its final probability of being a spot is
the weighted average from the classifier ensemble.



6

3 MRI Database for Cell Detection

Since there is no public database for cell detection in MRI, we collect a database
in both in vivo and in vitro settings, and manually label the ground truth spots.

In vitro MRI: A phantom was constructed consisting of a known number
of 4.5 micron diameter, magnetic microparticles with 10 pg iron per particle,
suspended in 1% agarose. T2*-weighted gradient echo MRI was performed on
this sample at a resolution of 100 micron isotropic voxels (128× 80× 80 pixels).
Using a field strength of 7T, a total of four MRI in vitro scans of different tubes
were developed. One of these tubes was näıve whereas the rest contained spots.

In vivo MRI: At a field strength of 11.7T, five rat brains are scaned to
obtain MRI cubes of 256×256×256 pixels. Three rats were injected intracardiac
with MPIO-labeled MSCs, delivering cells to the brain, and two rats were näıve.

Labeling: For quantitative evaluation, for every MRI scan with spots, a
domain expert manually clicked on a set of 2D dark pixels on every slice, using
our GUI labeling tool that allows zooming in locally. The superpixel of one
clicked pixel, or the concatenation of multiple nearby pixels, forms the interior of
one ground truth 3D spot. This leads to a set of ground truth spots S = {si}Ki=1,
si = (xi, yi, zi)T , where xi, yi, zi are the 3D spot center. There are 841 and 15, 457
ground truth spots on three in vitro scans and three in vivo scans, respectively.
Labeling such data is not only time consuming but also subjective. Therefore, to
learn the inter-rater variability, we compute Dv = 1− 1

3

∑3
i=1 |J1∩J2|/|J1∪J2|

to be ∼36% on three in vitro scans, where J1 and J2 are labels of two experts.

4 Experimental Results

In this section we design experiments to investigate answers to the following
questions: (i) how does our approach perform and compare with the previous
approaches using both in vivo and in vitro data? (ii) how does the discriminating
potential of superferns quantitatively compare with the fern features? (iii) how
diverse is the classifier ensemble created by our proposed approach?

Experimental setup: For each detected spots ŝ, we claim a true detection
if there is a ground truth spot within a small distance, i.e., ||̂s− si|| < 0.5 pixel.
The ROC, and Area Under the Curve (AUC) are the evaluation metrics. For the
5-scans in vivo data, we adopt a leave-two-out scheme such that our testing set
contains one labeled and one spotless scan. This creates six pairs of training and
testing sets, which allows us to compute the error bar of ROC. For the 4-scans
in vitro data, three pairs of training and testing sets are formed such that the
näıve scan remains in the testing set accompanied by every other scan once.
Since [4] and [9] are the most relevant examples of MRI cell detection using
learning-based and rule-based methods, we implement them as the baselines.
We experimentally determine τ = 9, h = 215, N0 ∈ [6, 9] for in vivo data, and
U ∈ [200, 2000] and Ũ ∈ [20, 60] depending on the size of brain regions.

Performance and comparison: As shown in Fig. 6 (a,b), the proposed
method outperforms two baselines with an average AUC of 98.9% (in vitro) and
89.1% (in vivo). The improvement margin is especially larger at lower FPRs,
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(a) In vivo data (b) In vitro data (c) No superferns or partition

Fig. 6. Detection performance comparisons and with various components.

(a) (b) (c) (d)

Fig. 7. Spot detection examples: (a) true detection, (b) false negative, and (c) false
positive of in vivo data. Each column shows two consecutive slices of a spot. Note the
amount of appearance variations in in vivo data. (d) visualization for a 3 sliced spot.

which are the main operation points in practice. Fig. 6 (c) shows that with in
vivo data, by using ferns instead of superferns or by making no partitions of the
brain region, we observe a decrease in AUC to 87.1% and 85.3%, respectively.
We also applied the standard implementation of C4.5 decision tree to our data,
since decision trees naturally splits data based on features, however, the obtained
results were significantly inferior to our approach. Fig. 7 shows three types of
spot detection results with our method. The appearance and shape variations
among the spots clearly show the challenge of this problem.

Superferns vs. ferns: To further illustrate the strength of the novel super-
ferns feature, we compare the discriminating potential of superferns with ferns,
regardless of the classifier design. Information gain (IG) is a standard tool to
measure the worth of a feature, where a higher IG indicates its higher discrimi-
nating potential. Given a set of 50 randomly generated offsets {oi}, we calculate
their superferns features on the in vitro data including both spots and non-spots,
which allows us to compute As containing the IG of each superfern. The same
offsets are applied to the fern features and then their corresponding set of IGs Af

is computed. Finally we compute the ratio of both IGs, As(i)
Af (i) , for each offset oi,

and show the Cumulative Density Function (CDF) of 50 ratios in Fig. 8. Using
100 random offsets, the same experiment is repeated for the in vivo data. The
fact that almost all ratios are larger than 1 shows the superiority of superferns.

Diversity analysis: Our classification framework includes an ensemble of
classifiers, one for each partition. Fig. 9 shows for one slice the N0(= 8) partitions
and the enclosured large superpixels Ṽz,.. Since diverse discriminative features are
likely to be utilized in different partitions, learning on disjoint partitions should
favor high diversities among classifiers – an indicator for effective classification.
To evaluate the diversity of our classifier ensemble, we use the standard Cohen’s
kappa value [6], which ranges from 0 to 1, with a lower value indicating a higher
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Fig. 10. Classifier diversity.

diversity. For each of six in vivo training sets, we compute N0(N0−1)
2 kappa values,

each between a pair of classifiers learned on different partitions. Fig. 10 shows
their mean and standard deviation for each training set. According to [6], our
kappa values is very low, indicating the high diversity of learned ensemble.

5 Conclusions and Future Work

This paper presents the first comprehensive study on learning-based cell/spot
detection in MRI. We propose a novel framework that employs a superpixel-
based 3D spot model, extracts superferns features, and utilizes a partition-based
classifier ensemble. We collected a total of nine MRI scans with more than 16
thousand labels for evaluation. Experimental results demonstrate the superiority
of our approach. In future, we intend to investigate two directions: (i) further
improving the detection accuracy by learning more contextual information of the
brain; (ii) extend the spot detection from brain to other organs, such as liver.
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