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Abstract—Cercospora leaf spot (CLS) is the most serious
disease in sugar beet plants that significantly reduces the sugar
yield throughout the world. Therefore the current focus of the
researchers in agricultural domain is to find sugar beet cultivars
that are highly resistant to CLS. To measure their resistance,
CLS is manually observed and rated in a large variety of sugar
beet by different human experts over a period of a few months.
Unfortunately, this procedure is laborious and subjective. There-
fore, we propose a novel computer vision system, CLS Rater, to
automatically and accurately rate CLS of plant images in the real
field to the “USDA scale” of 0 to 10. Given a set of plant images
captured by a tractor-mounted camera, CLS Rater extracts multi-
scale superpixels, where in each scale a novel histogram of
importances feature representation is proposed to encode both the
within-superpixel local and across-superpixel global appearance
variations. These features at different superpixel scales are then
fused for learning a bagging M5P regressor that estimates the
rating for each plant image. We test our system on the field
data collected over a period of two months under different
day lighting and weather conditions. Experimental results show
CLS Rater to be highly consistent with a rating error of 0.65,
which demonstrates higher consistency than the rating standard
deviation of 1.31 by the human experts.

I. INTRODUCTION

As a plant with a high concentration of sucrose in its roots,
sugar beet accounts for 55% of the total sugar produced in the
U.S. [1]. However, despite using control strategies, the yield
from this crop is significantly reduced by various diseases,
among which Cercospora Leaf Spot (CLS) [2] is the most
serious one. This disease adversely affects about 33% of the
world’s sugar beet cultivation area [3]. One effective way to
tackle CLS is to plant more resistant cultivars of sugar beet. To
study the resistance property, scientists grow a large number
of genetically selected cultivars of sugar beet in the real field.
The resistance of each cultivar to CLS is observed and rated
by experts over a course of a few months. To facilitate rating,
Ruppel and Gaskill define a well-known 11-level rating system
adopted by U.S. Department of Agriculture (USDA) [4],
named “USDA scale”. However, this manual rating system has
three critical drawbacks: subjective where multiple experts can
have different ratings for the same plant, laborious where it
requires enormous time from experts for frequent and large-
scale rating, and relatively insensitive where the human eye
is not sufficiently sensitive to the subtle variation of the leaf
appearance. Therefore, an improved rating system addressing
these drawbacks is highly desired.

Given the popularity and low cost of visual sensors such as
cameras, a computer vision based system can be an excellent
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Fig. 1: A camera mounted to a field tractor records the plant
videos from top view. CLS Rater performs automated analysis
and assigns a rating of “USDA scale” to each video frame.

choice for the rating system where the images of plants are
analyzed and rated in an automated, consistent, and efficient
manner. Unfortunately, the agricultural industry appears to lack
such types of commercial systems. In the research community,
most of the prior works focus only on detecting or classifying
CLS from the zoom-in and well-controlled view of the leaf
images [5]–[8]. Although such leaf-level approaches simplify
the classification problem, they are practically hard to adopt
due to the stringent requirement on image acquisition.

Alternatively, the plant-level images can be more conve-
niently acquired in the field via a fly-over UAV or drive-
through tractor as shown in Fig. 1. However, automatic rating
on plant-level images is challenging, as illustrated in Fig. 2.
The varying light conditions in different weather contribute to
a large amount of appearance variations in the images. Dark
shadows tend to hide the details making it tough to analyze
the appearance patterns of diseased spots. In the higher ratings
of CLS, the dead plants mix up with the soil and hence not
confusing them with soil is challenging. Similarly a bright
glow in healthy leaves due to sunlight displays a yellowish
color that is normally present around the diseased leaves.

To fulfill the application needs and address the technical
challenges, we propose a novel system, CLS Rater, for the
automated rating of CLS disease in plant-level images captured
by a conventional tractor-mounted camera. Notably, this appli-
cation requires our system to make a global rating estimate
of a plant image by analyzing diverse appearance patterns
of disease in its local regions. We tackle this challenge with
our novel technical contribution of superpixel-based Histogram
of Importances (HoI) features that describe the local patterns
of each superpixel at the global image level. We then utilize



(a) Glow effect vs. shadow (b) Dark shadows

(c) Plants mix up with the soil (d) Variations in soil

Fig. 2: Appearance variations of plant images.

these features for learning image-level regression models. Al-
though superpixels are frequently used in image segmentation
problems [9]–[11], they have not been explicitly used to learn
image-level regression models. Given an input image, we first
extract superpixels at a pre-defined scale, e.g., M superpixels.
Since each superpixel is a collection of neighboring pixels
with similar appearance, a D-dimensional feature vector, e.g.,
a color histogram, is extracted to capture the local appearance
variations of a superpixel. Given the M × D feature matrix
extracted from all superpixels of an image, we describe the
appearance variations across all superpixels, by computing
a T -dimensional histogram for each column of this matrix.
This results in a DT -dimensional vector, where each element
describes the distribution of relative importance of one feature,
e.g., one representative color, among all individual superpixels.

Furthermore, depending on the rating of a plant, the distinc-
tive region of diseased leaves can have large-scale variations,
from a tiny spot to an extensive area of dead leaves. Hence, the
superpixels extraction is conducted at multiple scales, ranging
from hundreds to thousands of superpixels, and the proposed
HoI feature is extracted at each scale. Finally the features from
multiple scales are fused, from which a regressor is learned
based on a set of images and their manual labels of USDA
scale. We test CLS Rater on a dataset collected over a two-
month period in a real field under different outdoor weather
conditions. Experimental results show that our system is more
consistent in comparison to the human rating. CLS Rater can
predict rating with an average rating error of 0.65, while the
rating standard deviation of human is 1.31.

In summary, our paper makes three main contributions:

� We design a practical computer vision system that
conveniently consumes plant-level images of a real field and
automatically rate the CLS resistance in the USDA scale.

� We propose a novel histogram of importances feature
over the multi-scale superpixels representation, and demon-
strate its effectiveness in the regressor learning.

� We collect an image dataset of 458 sugar beet cultivars
with various degrees of CLS disease and the associated manual
labels in the USDA scale, over a two-month period. This
dataset is publicly available to the research community1.

1http://www.cse.msu.edu/~liuxm/precisionAgriculture.html

II. PRIOR WORK

There are a number of prior works focusing on detect-
ing or classifying CLS disease in sugar beet [5]–[7]. These
approaches utilize zoom-in leaf-level images to detect the
diseased segments and classify a leaf as diseased or healthy.
Such approaches address a less challenging problem than ours
due to the leaf-level images and a two-class classification
task, while we perform regression from plant-level images.
Furthermore, these approaches are hard to adopt in practices
since it is inconvenient to obtain leaf-level detail of each plant
in a large field. For instance, in [5], authors classify different
diseases in sugar beat leaves, where the plants are grown under
controlled laboratory conditions. In [6], the authors use leaf
images to differentiate a CLS leaf from a healthy one by a
SVM classifier. Similarly, [7] and [8] also use leaf images and
utilize a threshold-based strategy to monitor the diseased part
of the leaf. In contrast, we collected plant-level images in a
real field under different weather conditions, which exposes
our system to all kinds of real-world challenges. Further, our
system learns a regression model that predicts the continuous
severity of CLS disease in the 11-level USDA scale. To the
best of our knowledge, this is the first study to utilize the plant-
level real field images of sugar beet and automatically predict
the fine-grained severity of CLS disease.

Since our feature representation builds upon the superpixel,
we provide a brief overview of the related works in super-
pixels. With time, superpixel-based methods are becoming
more advanced. For example, authors of [12] discuss how the
superpixels resulting from different techniques can be com-
bined to achieve better image segmentation. Similarly, various
studies utilize superpixels for classifying local image segments.
In [13], authors use a multi-scale superpixel classification ap-
proach for tumor segmentation. Furthermore, superpixels have
been utilized in various other applications as shown in [9]–
[11]. Note that in our study, CLS rating needs to be conducted
globally for an entire image, while superpixels only capture
local characteristics of an image. Hence, to fill in the gap, we
need to address how the local characteristics of superpixels
can be summarized as an image-level representation, which
unfortunately has not been explicitly studied before and is the
main novelty of our technical approach.

III. OUR APPROACH OF CLS RATER

The input data to our system is the plant-level imagery
captured by a camera mounted on either a fly-over UAV or
a horizontal pole on a regular field tractor. Specifically in
this paper we use the latter, as illustrated in Fig. 1. Given a
plant image, superpixels are extracted and the pixels within
a superpixel are used to describe the local characteristics.
Although there are many types of features for representing a
local region, we decide to focus on the color and texture based
features. The reason is that, when a plant is going through
different stages of CLS infection, the amount as well as the
color of healthy leaf, diseased leaf, and visible soil regions
in plant images are changing accordingly. Thus, color can be
very useful in discriminating these three types of regions and
further predicting the rating. Similarly, texture also exhibits
distinct patterns on these different regions.

Like any learning-based computer vision system, CLS
Rater has a training stage and a testing stage. During the
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Fig. 3: The high-level architecture of our CLS Rater system.

training stage, a regressor is learned from a set of plant images
with manual labels of the “USDA scale”, with the goal that the
predicted rating from the regressor is as close to the labeled
rating as possible. While in the testing stage, the learned
regressor is applied to an unseen plant image for automatically
predicting its rating. As shown in Fig. 3, the training stage
includes two modules: codebook generation module (CGM)
and rating estimation module (REM). The goal of CGM is
to model the representative colors in three different types of
regions. In CGM, we manually label diverse sets of superpixels
into each of the three regions, to which k-means clustering is
applied independently for generating the codewords of these
three regions. In REM, superpixels are extracted from a set
of images at four scales, where at each scale a novel feature
representation is used to describe both the local and global
image characteristics. Features at all scales are then fused and
a regressor is learned from the selected features. Processing in
the testing stage is similar to REM except that it takes only
one image as input. We describe the key components of the
training stage as follows.

A. Superpixel Extraction

CLS appears as diseased segments in sugar beet plants and
depending on the extent of disease, these segments show large-
scale variations ranging from a tiny spot to a large segment.
As a popular middle-level representation, a superpixel is a
local segment in an image containing a group of neighboring
pixels with similar appearance. Normally a scale is specified
so that a pre-determined number M of superpixels can be
generated for one image. To capture the local characteristics
of diseased spots at all rating levels, we generate superpixels
SM = {s1, s2, · · · , sM} of an image at four different scales
where M = {500, 1500, 2500, 3500}. Using the standard im-
plementation of [14], we observe that superpixels at each scale
cover image local characteristics in a unique way, as shown in
the zoom-in views of the smallest and largest scales in Fig. 4.
For example, small sized superpixels, obtained with a large
M , can completely fit to a small diseased spot developed in
the early CLS stage. Although a larger sized superpixel cannot
restrict its boundary to a small segment present in low rating
images, it covers the surrounding of such a small spot and
hence provides useful neighborhood contextual information,

Fig. 4: Superpixels at M = 500 (left) and 3500 (right).

as indicated by the two parallel arrows in Fig. 4. On the other
hand, in high rating images, larger superpixels can cover an
entire large spot and provide a more confident indication of
the severity of CLS (the leftmost arrow in Fig. 4).

B. Codebook Generation Module

Motivated by the Bag of Words (BoW) approaches [15],
we first learn a color codebook to estimate the representative
colors (codewords) in the plant images. From our dataset we
select a diverse set of B = 33 images with various severities
of CLS. For each image, Ii, superpixels at multiple scales
{SM

i } are generated. Using our GUI, the superpixels SM
i of

image Ii is displayed on the screen, where a user may select
superpixels belonging to healthy, diseased and soil regions via
mouse clicks. The selected subsets are denoted as Sh

i , Se
i ,

and Ss
i respectively. We perform this step for all B images to

form SH = {Sh
1 ,S

h
2 , · · · ,Sh

B}, SE = {Se
1,S

e
2, · · · ,Se

B} and
SS = {Ss

1,S
s
2, · · · ,Ss

B}. We collect about 150 superpixels for
each of three categories. We perform this superpixel selection
procedure at two scales only. To select clean diseased spots,
we use {S3500

i } containing smaller superpixels, whereas it is
convenient to use {S500

i } for healthy plants and soil.

The RGB pixel values of all pixels within the superpixels of
SH , SE , and SS are fed to the k-means clustering for extract-
ing codewords of each category. We extract 10 codewords for
disease and soil respectively, and denote them as CE and CS .
Since the healthy part shows high variations and also responds
with lighter green in regions around the diseased part, we select
15 codewords CH . We combine CH , CE , and CS to obtain
a codebook with D = 35 codewords C = {c1, c2, ..., c35},
which will be used in the rating estimation module explained
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Fig. 5: Computing the Histogram of Importances (HoI).

below. An alternative approach to our codebook learning is
to directly learn the color codewords from the images, which
is not preferred because the resulting codewords will mainly
cover the variations in healthy and soil parts, hence creating
an unbalanced codebook.

C. Rating Estimation Module

Based on the superpixels of an image set, this module
performs two main tasks: 1) feature representation, and 2)
feature selection and regressor learning.

1) Feature Representation: Feature representation is crit-
ical for any computer vision system. In our work, we strive
to design an image-level feature that captures both the local
pixel statistics, such as the small diseased spots, and the
global image regularity, such as a large region of dead leaves.
This leads to our proposed approach to compute our novel
histogram of importances feature in two steps.

In the first step, a histogram feature is extracted to repre-
sent the color variation of all pixels within each superpixel.
Given that an image I contains a set of M superpixels
SM = {s1, s2, · · · , sM}, we compute a set of color histograms
H = [h1,h2, ...,hM ]. For each superpixel sm ∈ SM , we have
hm(d) = hd

|hm| , where hd indicates the number of pixels u
within sm whose color is most similar to cd among all 35
codewords, i.e., hd =

∑
u∈sm

δ(d = argmind ‖I(u)− cd‖2),
and δ() is the indicator function.

Although hm is a good descriptor of local appearance at
each superpixel, it cannot be applied to regression learning
directly because superpixels between two images are not
matching with each other, as well as it depends on the
superpixel scale M . Hence, we aim to extract an image-level
feature independent to superpixel locations or M . Specifically,
by observing the matrix H of an image, each element hm(d)
indicates the relative importance of the color feature cd within
the superpixel sm. Such an importance value can vary between
0 and 1. By collecting all the importance values corresponding
to the same feature cd, i.e., one column of H, we can form
a T -dimensional histogram of importance (HoI) gd, where
gd(t) =

∑
m δ( t−1

T � hm(d) < t
T ), 1 � t � T , and both t

and T are integers. We show this procedure diagrammatically
in Fig. 5. By collecting the HoI of all D color codewords,
we have a D × T feature representation GM = {gd} for one
superpixel scale M .
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Fig. 6: Color-based HoI of 9 images with different ratings.

Similar HoI features are also computed for the LBP-based
texture features [16] LM , where D = 256. In our study, we
use T = 10 for color features and T = 5 for LBP features.
Thus, for each image at one superpixel scale, we have a total
of 1, 630 features. To visualize the HoI features, Fig. 6 plots
GM of 9 randomly selected images at M = 500. We can
clearly see a decrease of importances in healthy features and
a slight increase of importances in soil features, as we move
to higher ratings.

2) Feature Fusion, Selection and Regression: As men-
tioned before, superpixels at different scale cover local char-
acteristics in different ways and provide different advantages
over each other. Therefore, to get the best from every scale, we
compute the color and LBP based HoI, GM and LM , at all four
scales of each image, which results in a feature vector with the
length of 1, 630 × 4. However, since not all feature elements
have a high discriminative power, we perform feature selection
by the correlation-based approach [17], which is based on two
measures: the high predictive ability and low correlation with
already selected features. We then pass the selected set of 162
discriminative features to the bagging M5P regressor [18],
[19]. M5P decision tree learns different regression functions
for each leaf node of the tree. Experiments in the next section
provide a comparative study of different regression schemes
on our features. Our results show bagging M5P to be superior
to other well-known regression paradigms.

IV. EXPERIMENTAL RESULTS

In this section we design experiments to answer the follow-
ing questions: 1) how does CLS Rater perform in comparison
to manual human rating? 2) how do different regression
schemes perform at different superpixel scales? 3) is there any
relation between the type of the regression methods and the
type of feature representation? 4) how do our discriminative
features vary across different CLS ratings? We now discuss
different aspects of our experiments to answer these questions.

Dataset To record the progress of CLS disease, we collected
220 total videos of a sugar beet field from July 30, 2013 to
September 12, 2013 on 10 different dates. Our field is of a
rectangular shape at 135 × 168 meters, and plants a total of
458 sugar beet cultivars. Along the short edge of this rectangle
there are 22 field lines, where our tractor drives along each of
the field lines for data collection. For each field line, our system
captures a video of about 3 minutes at 30 FPS, with a frame
size of 1, 080×1, 920. We reduce the frame size to 540×960
for improved computational efficiency. A conventional RGB
camera captures these videos from a height of 1.2 meters. For



TABLE I: Rating distribution of individual labels {r1i ,r2i ,r3i }.

Labeled rating 0 1 2 3 4 5 6 7 8 9 10
# of images 3 33 129 180 147 138 141 72 63 12 0

performance evaluation, we utilize a diverse set of 306 images
extracted from all videos as the training and testing set. Using
the USDA scale, three experts separately provide labels to all
these images. The overall distribution of all labeled images
across different ratings is tabulated in Tab. I.

In our experiments, we randomly split the 306-image set
into two equal parts and use one for training and the other
for testing. This is repeated to generate five partitions of
training and testing sets. To address the inconsistency of human
labeling, for each image Ii in our dataset, the manual ratings
from three experts are averaged to generate the ground truth
rating r̄i. Given r̄i and the estimated rating of r̂i from CLS
Rater, we compute the rating error of our system on a K-
image testing set as e = ( 1

K

∑
i ||r̄i − r̂i||2) 1

2 .

Regression Results Using our data, we evaluate a diverse
set of regression methods belonging to three categories: (1)
functional regression (SVM [20], Least Median Squared Lin-
ear (LMS) [21], Linear), (2) decision tree learning-based
regression (M5P) [19], and (3) rule learning-based regression
(M5Rules) [22]. We use bagging with each of these methods
to enhance their predictive abilities. To remove the bias in
coding, we utilize the standard regression implementations
in [17]. Regressor training and testing are conducted on all
five partitions and the average results are reported in Tab. II.
We observe that while features at different superpixel scales
are preferred by different regression methods, the fused feature
(Sall) achieves the best performance regardless of the method.
Also in general M5P performs the best among all regression
methods. Therefore, our CLS Rater utilizes the fused feature
with a M5P regressor. One baseline method to compare with
our HoI feature is the BoW features [15] based on the 35 color
codewords and 256 LBP codewords of each image. As shown
in the BoW column of Tab. II, none of the regression methods
based on BoW is superior to CLS Rater.

We further explore how the regression methods perform
with different types of appearance features, i.e., color and LBP.
As shown in Fig. 7, in general fusing color and LBP features
improves the system performance for various regression meth-
ods. However, M5P and M5Rules perform well using color
alone, and fusing with LBP has no noticeable improvement.

To study how CLS Rater performs across different ground
truth ratings, we plot the estimation results of all testing images
in one of the partitions in Fig. 8. The narrow line-like plot
shows that the rating error is evenly distributed across the
entire rating range, which is desired for practical applications.

Feature Analysis We now analyze the features selected by
M5P during its training process. Note that M5P is a tree-based
regressor where each node is associated with a selected feature.
Due to limited space, we only analyze the top hierarchy nodes
(features) and select four nodes, each with a different type
of feature, i.e., the color features from the disease, soil and
healthy region and one LBP-based texture feature. In order
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Fig. 7: Regression performance with different feature types.
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Fig. 9: Top hierarchy features of bagging M5P regressor.

to see how effective these four selected features are on the
testing images, we perform the following computation. Using
the same testing set as Fig. 8, we allocate the testing images
with the same ground truth rating into one group. For each
of the four selected features, we compute its average feature
values from images within the same group. This leads to a
vector for each selected feature, which is further normalized
by dividing with the maximal element in the vector. We plot the
resulting four vectors in Fig. 9. We see a clear trend for each
of the four features. For example, there is an overall increase
in the values of the disease feature and a notable decrease in
healthy feature as moving to higher ratings, which is consistent
with the observation of human rater in the field. This study also
provides an insight on how the HoI feature element extracted
from various regions contributes to CLS rating.

CLS Rater vs. Human Rating In general, it takes about 5
seasons to train an unskilled individual for rating CLS disease
and at least 1 season to train a pathologist. However, it is
well known that human experts tend to provide inconsistent
rating for CLS. Hence, it is interesting to compare the rating
error of CLS Rater to the error observed in human rating. The
minimal estimation error for CLS Rater is 0.65, as shown in
Tab. II. For comparison, we calculate the standard deviation
of human rating using the same equation as our system error
e, i.e., eh = ( 1

3K

∑
i

∑
j ||r̄i − r̂ji ||2)

1
2 . Based on the same

five partitions in computing e, the standard deviation of human



TABLE II: Rating error (e) at different superpixel scales.

Regression S500 S1500 S2500 S3500 BoW Sall

M5P 0.90 ± 0.03 0.91 ± 0.04 0.88 ± 0.03 0.69 ± 0.04 0.73 ± 0.02 0.65 ± 0.03
SVM 1.10 ± 0.09 1.12 ± 0.05 1.05 ± 0.09 0.81 ± 0.08 0.83 ± 0.03 0.75 ± 0.04
Linear 1.46 ± 0.17 1.40 ± 0.11 1.06 ± 0.13 0.91 ± 0.03 0.83 ± 0.04 0.82 ± 0.06

M5Rules 0.92 ± 0.04 0.92 ± 0.05 0.89 ± 0.03 0.70 ± 0.03 0.74 ± 0.03 0.66 ± 0.05
LMS 1.35 ± 0.42 1.41 ± 0.17 0.95 ± 0.04 0.94 ± 0.12 0.85 ± 0.03 0.70 ± 0.04
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Fig. 10: CLS ratings of the entire field over two months.

rating eh is 1.31±0.08. The superior consistency of our system
over the human experts indicates the great potential of applying
CLS Rater in practices.

CLS Resistance Patterns in the Field Using our CLS Rater
system, we can also study how the disease grows in different
sections of the field over the two-month period. Since each
section corresponds to a known sugar beet cultivar, this study
provides many insights to the domain experts about the CLS
resistances of various cultivars. As shown in Fig. 10, each box
is made of 22× 140 subunits where 22 is the number of field
lines and 140 is the number of evenly sampled images along
each field line. Note the high rating region on “July 30” is
the result of almost all soil and little plant, which is likely
due to the delayed plant growth at that region. We observe
that cultivars at the left of the middle field lines show far less
resistance to CLS, while some cultivars at the field lines 13
and 14 are very resistant even till the end of the season.

V. CONCLUSIONS

This paper introduced a novel computer vision system, CLS
Rater, which uses plant-level images for the automated rating
of the CLS disease in sugar beet plants. We tested our system
on a real field under different lighting and weather conditions
over a period of two months. CLS Rater utilizes a novel HoI
feature to represent the local characteristics of superpixels at
the image level and predicts the rating with an error of 0.65,
which is substantially more consistent in comparison to manual
rating performed by human experts. One future direction is
to learn CLS Rater from a set of image pair each ranked
by their disease severity, using approaches such as boosted
rank learning [23]. Furthermore, since the technical approach
of CLS Rater is very general, we will apply it to disease
monitoring of other plants and a variety of precision agriculture
applications in the real field.
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