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Abstract

Researchers in the areas of regenerative medicine and
tissue engineering have great interests in understanding the
relationship of different sets of culturing conditions and ap-
plied mechanical stimuli to the behavior of mesenchymal
stem cells (MSCs). However, it is challenging to design a
tool to perform automatic cell image analysis due to the
diverse morphologies of MSCs. Therefore, as a primary
step towards developing the tool, we propose a novel ap-
proach for accurate cell image segmentation. We collected
three MSC datasets cultured on different surfaces and ex-
posed to diverse mechanical stimuli. By analyzing existing
approaches on our data, we choose to substantially extend
binarization-based extraction of alignment score (BEAS)
approach by extracting novel discriminating features and
developing an adaptive threshold estimation model. Exper-
imental results on our data shows our approach is supe-
rior to seven conventional techniques. We also define three
quantitative measures to analyze the characteristics of im-
ages in our datasets. To the best of our knowledge, this is
the first study that applied automatic segmentation to live
MSC cultured on different surfaces with applied stimuli.

1. Introduction
In 2006, about 6, 300 people died in U.S. because of vi-

tal organ failure [3]. According to the Department of Health

and Human Services, about 18 people die in U.S. everyday

while waiting for an organ transplant [1]. To remedy this

issue, scientists have seen a promising solution for organ

transplant rejection, organ failure, and cardiovascular repair

by using regenerative medicine [2]. Hence, studies related

to understanding the behavior of mesenchymal stem cells
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Figure 1: MSC image data collection. Cells are cultured on

a substrate with an applied fixed stretch as a stimulus. This

substrate is then placed under a microscope for observing

cell growth. A computer interfaces with the microscope and

captures the images.

(MSCs) have gained enormous interests due to their appli-

cations in regenerative medicine. Recent statistics of the

Public Clinical Trials database shows the use of MSCs in

206 clinical trials covering a wide range of therapeutic ap-

plications [25]. Therefore, studies pertaining to the MSCs

behavior are gaining significant importance with time.

The goal of studying MSCs behavior is to understand the

cell responses and the mechanism by which the cell shows

a particular response to a mechanical stimulus [8]. Specif-

ically, scientists perform MSCs experiments using diverse

culturing conditions, capture a large number of images, and

analyze them for detecting specific patterns. Manual analy-

sis of these images cannot be effective, therefore commer-

cial tools have been developed to assist researchers. How-

ever, these tools are not sufficiently accurate and involve a



(a) 35PDMS+Cuts (b) 10PDMS+Stretch (c) Plastic+Cuts

Figure 2: Example images from each of the three datasets.

lot of manual work. For example, in a recent evaluation of

endothelial cell density estimation with three commercial

tools, two out of three analysis results were not compara-

ble to the ground truth and significantly overstated the cell

density [20]. Since MSCs have a higher differentiating na-

ture than endothelial cells, such analysis can be even more

challenging. Hence, there is a strong need for a tool that

accurately performs automatic MSCs analysis.

However, due to the diverse nature of MSCs experiments

and the special differentiating characteristics of MSCs,

even the segmentation of MSCs, the first step in auto-

matic analysis, can be a challenge. To understand the

MSCs behavior, we collect datasets of MSCs from three

experimental conditions with different mechanical stimuli:

(i) 10: 1 crosslinked polydimethylsiloxane (PDMS) sub-

strate kept under mechanical stretch, (ii) 35: 1 crosslinked

PDMS substrate with applied cuts, and (iii) plastic sub-

strate with cuts. In this paper, these conditions are denoted

as 10PDMS+Stretch, 35PDMS+Cuts, and Plastic+Cuts, re-

spectively. Figure 1 shows our data collection procedure. A

number of traditional threshold-based image segmentation

approaches fail to achieve satisfying results on our datasets.

The best performing approach, the recent binarization-

based extraction of alignment score (BEAS) [27] approach,

uses an adaptive threshold based segmentation. Its thresh-

old is estimated based on the mean and standard deviation,

which cannot cover sufficient statistics of a cell image dis-

tribution. Our analysis shows that different local regions in

the cell images with the same mean and standard deviation

may have different optimal thresholds. This raises the need

of a more effective MSC segmentation approach.

To address this problem, this paper proposes a novel and

effective approach to segment MSC images captured under

different mechanical stimuli. To deal with the challenge of

segmentation on our MSC datasets, we aim to understand

the characteristics of our data by using three simple quanti-

tative measures and by analyzing the intensity distributions

of local cell patches in relation to the performance of tradi-

tional approaches. Furthermore, by significantly extending

the BEAS approach, we propose a novel combination of

threshold estimation model, as well as more effective fea-

tures that relate to the rate of rise in the intensity distri-

bution of a cell image. Comparison of our approach with

traditional approaches clearly shows the superiority of our

approach on the MSC datasets.

In summary, this paper has three main contributions:

� We propose a novel and effective approach for accurate

segmentation of MSC images obtained from live cultures

under diverse mechanical stimuli.

� We collect three diverse datasets of MSCs exposed to

different mechanical stimuli. To facilitate future research

and comparison, our databases are publicly available.

� We conduct the first comparative study of seven

well-known image segmentation approaches on these three

datasets of MSC images.

2. Prior Work
Automatic cell segmentation is not new to our research

community. However, it is important to note that the design

of cell segmentation algorithms varies significantly depend-

ing on factors such as the morphological and behavioral

characteristics of different cells, and the objective of the

cell study. To the best of our knowledge, there is no com-

prehensive study in the literature that specifically aims for

MSC segmentation. Therefore, this paper focuses on accu-

rate cell segmentation in our challenging MSC datasets. As

shown in Fig. 2, we observe significant variations in MSC

images when cultured under different experimental setups.

In some studies, florescence is used to highlight the cells

in an image, which makes cell segmentation substantially

easier. For example, Wiliem et al. use such images to clas-

sify human epithelial cells [26]. Studying lymphocytes on

such images is the focus of [16]. Similarly, two recent

works [5, 11] use color-based images for cancer detection.

However, in our study the behavior of live cultures of cells

has to be observed without using fluorescence or staining.

In the literature, researchers have adopted various ap-

proaches to cell segmentation. In [9,28], live cultures of the

cells are used to detect mitotic events of cells and track them

across frames. A bright spot appears in the image when a

cell goes through mitosis. Authors in [28] adopt the level set

method, whereas the segmentation technique of [9] is based

on a specific microscopy imaging model. On the other



Figure 3: Overall architecture of our approach.

hand, many studies also employ supervised learning-based

approaches, such as neural network [15,16] and AAM [14].

Authors in [4] adopt a learning-based template matching ap-

proach to segment cell nuclei in microscopy images. How-

ever, learning-based approaches might not be suitable for

a rapid large scale analysis on cell data, due to the time-

consuming manual labeling of large data and training. Fur-

ther, approaches that utilize morphological models for cell

segmentation, might not be a preferred choice for our MSC

datasets due to the highly differentiating nature of MSC,

i.e., it continually changes its morphology.

Gradient based approaches are also of interest to many

researchers [6, 23]. In [6], behaviors of the fibroblast cells

are studied and mitotic events are tracked which appeared as

bright spots in their images. However, gradient based tech-

niques are not known for performing well on low contrast

and noisy images [27]. Further, study in [6] does not explic-

itly describe the image diversity in its dataset. In contrast,

due to substantial diversity in our datasets, we thoroughly

study dataset based variations using quantitative measures,

while designing our proposed approach.

Thus, the nature of our MSCs study directs us to pre-

fer the use of learning-free approaches that are independent

of utilizing any morphological models for cell segmenta-

tion, such as those mentioned in [18, 19, 22, 29]. In a sim-

ilar BEAS approach [27], Xu et al. study the cellular ori-

entations and show that adaptive thresholding is effective

in segmenting a diverse set of cell images. After applying

the preprocessing steps to the cell images, they use the lo-

cal thresholding approach of Savoula and Pietikäinen [22]

for segmentation. They obtain significantly better results in

comparison to Fast Fourier Transform-Radial Sum [17] and

gradient based approaches [12]. This motivates us to study

the BEAS approach and further extend it to tackle our data.

3. The Proposed Approach
The overview of our approach is shown in Fig. 3. A cell

image of MSC datasets first goes through the preprocessing

step, where we use the despeckle filter to reduce the image

noise and Gaussian blur to remove the effects of uneven il-

lumination. A similar preprocessing step is adopted in [27].

We use the standard implementation in ImageJ [21], with a

standard deviation of 2 for Gaussian blur.

Our analysis shows that there is a high overlap between

the cell and background intensities, and diverse intensity

distributions at different areas of a cell image. Thus, to re-

duce the intensity variation in the cell and background pix-

els, we extract local patches from the original image. These

patches are passed through the feature extraction step, after

which our threshold estimation model calculates an accu-

rate threshold to segment the MSCs. In the remaining sec-

tions, we provide the details of three steps: patch extraction,

feature extraction, and threshold estimation.

3.1. Patch Extraction
Although after preprocessing our cell images might

be less noisy, they are still challenging to segment, as

shown by the performance of conventional approaches in

Sec. 4. Hence, we perform a comprehensive analysis on

our database to understand its characteristics and complex-

ity. Our analysis shows that there are huge variations in the

intensities of cell and background pixels, and thus there is a

significant overlap between the pixel intensities of cells and

background. As a result, using a single and global thresh-

old to segment the entire image might not be an effective

approach. To reduce the image complexity, we randomly

extract patches of size 300 × 300 from the original image.

The patch size is chosen in order to capture a reasonable

amount of cells with background regions.

We now observe and measure the effect of this patch ex-

traction step. To quantitatively evaluate the reduction of

complexity, we define three measures, as shown in Table 1.

Higher values of these measures indicate higher complexity

for segmentation. Also, these measures help us to compare

the complexity of all three datasets and can potentially be

used by researchers for comparing their datasets with ours.

We now define these measures as follows:

Cell-pixel variance If the pixel intensities of a cell region

show a high variance, this can pose a challenge for cell seg-

mentation. If Nc is the total number of pixels in all cell

regions, pci represents the intensity of a pixel i within cell

regions, and m(pci ) is the mean intensity of all cell pixels,

we calculate the cell-pixel variance as follows,



Table 1: Quantitative measures for three datasets.

Measures 35PDMS+Cut 10PDMS+Stretch Plastic+Cut
Original sc 3.167±0.964 5.494±0.114 7.841±0.574

image sb 6.372±0.029 7.088±0.330 10.389±0.431

η 0.869 0.896 0.810

Patch sc 2.599±0.547 2.556±0.853 5.930±0.182

sb 5.763±0.537 5.259±0.678 9.652±1.619

η 0.878 0.903 0.810

sc =
1

Nc

Nc∑

i=1

(pci −m(pci ))
2. (1)

Table 1 shows that sc is high for all the original images and

reduced significantly for the extracted patches. This means

a potential decrease in the overlap of cell and background

pixel intensities and an increase in the ease of segmentation.

Also, we note that sc is the highest for the Plastic dataset.

Background-pixel variance Similarly, the cell images are

difficult to segment if the distribution of background pixels

has a large variance. We define this measure as follows,

sb =
1

Nb

Nb∑

i=1

(pbi −m(pbi ))
2, (2)

where Nb is the number of background pixels, pbi is the

intensity of a background pixel, and m(pbi ) represents the

mean intensity of background pixels. Again, Table 1 shows

decrease in sb due to the patch extraction step. However,

the overall decrease of sb is less than that of sc. Further-

more, we observe the highest sb for patches from the Plastic

dataset. Thus, the two measures, sc and sb, clearly show

that the Plastic dataset is the most challenging, whereas

these measures are the lowest for 10PDMS patches.

Cell to background ratio To understand the contrast be-

tween the average cell intensity and the average background

intensity, we define η =
m(pc

i )

m(pb
i )

. In case of no cells, this mea-

sure has a zero value. On the other hand, in the most chal-

lenging case η = 1, which means the mean cell intensity

equals to the mean background intensity. It is desirable to

have low values of η. Higher values mean a very small dif-

ference between the intensity levels of cell and background

regions in an image. Table 1 shows that all our datasets have

η > 0.8, and these high values indicate all our datasets to

be challenging. However, no significant change of η is ob-

served as a result of patch extraction. This shows that local

patches can have smaller intensity variations in both the cell

and background region, but not necessary higher contrast in

their intensity levels.

3.2. Distribution Analysis and Feature Extraction
In order to design an accurate model for segmenting the

MSCs in our three datasets, we need to extract and utilize

the most effective features from the image data. For this

purpose we propose a novel combination of features, listed

below, for our threshold estimation model:
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Figure 4: Two sets of image pairs with the same mean and

standard deviation but different optimal thresholds (shown

as True Th).

� Rate of rise,

� Mode intensity for a patch,

� Maximum rate of rise for a dataset.

It is important to provide the analysis that leads to the de-

sign of this feature combination. Thus, rather than merely

introducing the features, we explain our two-fold analysis

to discover the above feature set: (i) analyze the features in

prior threshold-based approaches, and (ii) explore the rele-

vance of these features w.r.t. our datasets.

3.2.1 Features of Prior Threshold-based Approaches
Most well-known threshold-based approaches show a bias

towards using the mean and standard deviation as the fea-

tures [10,18,19,22]. These approaches have performed very

well on some datasets. For example, in [27], the authors de-

sign the BEAS approach to segment the diverse sets of cell

images and report accurate results. However, when we an-

alyze our datasets using only the mean and standard devia-

tion based measures, we observe the need of more discrim-

inating features. This will be explained in the next section.

3.2.2 Relevance of Features on Our Datasets
To analyze the relevance of any features to our dataset, we

first study the pixel intensity distributions in our cell im-

ages. For a general non-Gaussian distribution, the mean and

standard deviation can not completely describe the informa-

tion of a distribution. Two very different distributions could

have the same mean and variance. This is also true for the

pixel intensity distribution of cell images. In other words,

two cell images with the same mean and standard deviation

can have different optimal segmentation thresholds. For ex-

ample, in Fig. 4, the mean and standard deviations of two

distributions in a pair are approximately the same but their

optimal thresholds are significantly different.

This can create challenges for many threshold-based ap-

proaches including [27] on our datasets. Hence, to find a

differentiating feature, we study the common characteristics

of all the distributions and particularly of confusing cases

such as those in Fig. 4. We find that even for a small patch

with a few cells, the pixel intensities of some cells can lie

in a very different range than other cells. Similarly not all

background regions have the same range of pixel intensities.



Some background regions can be much darker and their in-

tensities can also overlap with those of cells. We observe

the rate of rise as a main factor that can characterize the di-

verse distributions. The rate of rise is defined as the rate

at which the pixel intensity in the histogram of a cell im-

age rises from its low values (mainly cell regions) towards

the peak value (mainly background). As shown in Fig. 4,

even though the mean and standard deviations are the same,

the rates of rise are different for the various distributions,

representing the different nature of the cell and background

distribution. Therefore, to utilize this feature in our thresh-

old estimation model, we use the power of the exponential

distribution to measure the rate of rise,

y = Aeβx, (3)

where x are pixel intensity values in a patch that are less

than or equal to the most frequent intensity value and y is

the count of pixels for each intensity value in x. We calcu-

late the rate of rise, β, using a standard curve fitting proce-

dure based on a pair of x and y.

Further, for each patch this rise ends as it reaches the

peak value presenting the most frequent intensity called

“mode”. The mode intensity can be different for each patch

and hence we consider it as a feature in combination with

the rate of rise. The concept of rate of rise is somewhat sim-

ilar to the kurtosis of a distribution as both tend to measure

the peakedness of a distribution but unlike kurtosis, to com-

pute rate of rise, we consider the part of the distribution that

lies to the left of the mode intensity. Moreover, our feature

set also includes a parameter that estimates the maximum β
of all patches in a dataset. This feature will be explained in

the next section of threshold estimation model.

3.3. Threshold Estimation Model
In addition to effective features, we also need a well-

desined model to utilize these features for threshold estima-

tion. Considering our analysis and accurate prior results re-

ported by [27], we significantly evolve the BEAS threshold

model to a more accurate model. To make this paper self-

contained, we first introduce the BEAS threshold model. As

shown in Eqn. 4, the BEAS model calculates a threshold T
by an addition of two parts: a reference part and a shift part.

T = m+ km(
s

R
− 1), (4)

where m is the mean intensity of a patch and s is the stan-

dard deviation of a patch. The maximum standard deviation

of a dataset, R, can be learnt either from the data or pro-

vided by the user. The parameter k is specified by the user

to tune the model.

Typically the threshold is estimated at a distance from

the mean value. Hence, m acts as the reference part and

km( s
R−1) measures the shift from m towards the estimated

threshold. It is important to note that the shift part is a criti-

cal term and determines the accuracy of the threshold-based

segmentation. As mentioned before, this model is primar-

ily determined by the mean and standard deviation and our

experiments show that it is not sufficiently accurate on our

datasets. Therefore we extend both the shift and the refer-

ence parts to explore the efficacy of our feature set.

Extend the reference part Our approach focuses on the

discriminative ability of the shape of the rise in a cell im-

age distribution. This rise ends completely when the pixel

intensity equals the mode value and therefore the mode acts

as a reference in our model. Denoted as mp, the mode of a

patch is the most frequent pixel intensity within a patch.

Extend the shift part The shift part can further be seen as

a product of two terms, km and ( s
R − 1). To explore and

compare the effectiveness of our approach, we first extend

the second term and utilize the discriminating ability of the

rate of rise β. The extension can be written as ( β
�βμ

− 1),

where β is the rate of rise for a patch and �βμ estimates the

maximum rate of rise in one dataset. In our experiments, βμ

is calculated by averaging β of randomly selected 5 patches

from a dataset, and � is set to be a constant of 2.

The first term in the product, km, is extended in our

model to kmp. We use k = 0.35 in all our experiments.

In our model we further weight this term with
mp

255 , which

indicates the position of the mode w.r.t. the range from 0
(darkest) to 255 (brightest).

After incorporating all our extensions, we use the fol-

lowing model to calculate the threshold T of a local patch:

T = mp +
km2

p

255
(
β

�βμ
− 1). (5)

In summary, βμ is calculated once for each of our three

datasets. To estimate a threshold for each patch in a specific

dataset, β and its mode intensity mp are calculated. Suitable

constants for k and � are used for our model. In this paper

we do not focus on thoroughly finding the optimal values

for � and k. However, it is important to note that our model

is less sensitive to the values of k than that of �.

4. Experiments and Results
In this section we test our approach on MSC image

patches from three datasets that are collected for analyzing

the responses of cells to mechanical stimuli. We first ex-

plain our dataset collection process, and then present the de-

tailed experimental results. Finally we provide a brief dis-

cussion on the relationship between the accuracy of higher

level analysis and the role of cell segmentation.

4.1. Dataset Collection
We begin by explaining the details of our dataset and the

experimental setup for collecting our data. As the focus of

our dataset, MSCs are isolated from Sprague-Dawley rats.

Femurs and tibias are dissected from 6–8 week old rat as de-

scribed in [31]. The cells are grown over a period of 5 days

and imaged using the Leica DM IL inverted microscope



Table 2: Comparison of threshold estimation errors et.

Algorithm 35PDMS+Cuts 10PDMS+Stretch Plastic+Cuts
Huang 9.11±1.88 7.4±3.02 14.50±4.16

Li 11.44±2.91 8.72±2.94 16.89±5.09

ME 31.44±8.94 24.12±10.24 37.61±17.50

Otsu 16.11±9.48 10.16±4.30 19.39±6.57

SH 33.78±27.66 14.92±12.62 49.94±32.45

Yen 32.44±8.89 24.32±12.22 39.61±20.61

Ours 1.32±0.79 1.36±1.24 1.626±1.76

(Bannockburn, IL) with a 10X objective. For our study,

these cells are grown on three different substrates subjected

to different stimuli. Each stimulus has a different role in

affecting the behavior of the MSCs. We list the conditions

as follows: (i) 35: 1 crosslinked PDMS substrate with cuts,

(ii) 10: 1 crosslinked PDMS substrate with applied stretch,

and (iii) Plastic substrate with cuts.

Our database contains 28 images of the size 1392×1040,

10 images of the size 1200 × 1600, and 15 images of

the size 1392 × 1040 in the datasets of 35PDMS+Cuts,

10PDMS+Stretch, and Plastic+Cuts respectively. For per-

formance evaluation, we randomly extract a diverse set of

86 patches, with a size of 300× 300, from the 53 images of

MSC databases: 50 patches from 10PDMS+Stretch and 18
patches from both 35PDMS+Cuts and Plastic+Cuts. To fa-

cilitate future research and performance comparison, these

three MSC databases are publicly available1.

4.2. Results and Comparison
In order to study the performance of conventional ap-

proaches on our data and compare to our approach, we se-

lect a diverse set of well-known global and local threshold

based approaches. To remove any bias in our coding, we use

the standard implementation of these approaches (the auto

threshold tool and the auto local threshold tool2) available

in ImageJ. All the approaches are tested on the same lo-

cal patches extracted from three datasets, which have been

passed through the preprocessing step mentioned in Sec. 3.

Before we present the results, we briefly introduce the base-

line approaches to make this paper self-contained.

� Huang [7] The threshold is calculated based on min-

imizing the measures of the fuzziness. This approach also

makes use of the Shanon’s Entropy.

� Li [13] This technique uses the minimum cross entropy

for thresholding. The implementation used in this paper is

based on its iterative version.

� BEAS [27] This is a local theshold based approach.

It considers a limited surrounding region around each pixel

and estimates a threshold to segment a particular pixel based

on the mean and standard deviation.

� Max Entropy (ME) [10] This technique uses the en-

tropy of the histogram for thresholding. We use the standard

1http://www.cse.msu.edu/˜liuxm/MSC
2http://fiji.sc/wiki/index.php
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Figure 5: Comparison of estimated thresholds on 35PDMS.

implementation of this approach detailed in [10].

� Otsu [19] This technique is based on minimizing the

intra-class variance of the two classes. This intra-class vari-

ance is a weighted sum of the variance of two classes.

� ShanBhag (SH) [24] In this entropy-based technique,

the image is considered to be composed of two fuzzy sets

that correspond to two classes.

� Yen [30] This multi-level thresholding technique is

based on two factors: the discrepancy between the original

and the thresholded image, and the number of bits required

to represent a thresholded image.

To make a comprehensive analysis, we use two differ-

ent evaluation matrices: (i) the threshold prediction error

et, which is the absolute difference between the estimated

threshold T and the ground-truth threshold Tg , and (ii) the

similarity score S of the estimated segmentation mask Mg

w.r.t. the ground-truth mask M. For each patch in our

datasets, we manually adjust the threshold until achiev-

ing visually appealing segmentation results. The resultant

threshold is treated as the ground-truth threshold Tg , based

on which the resultant segmentation mask is considered as

the ground-truth mask Mg . We compute these metrics by,

et = |T − Tg|, (6)

S = 1− ||M−Mg||22
NM

, (7)

where NM is the total number of pixels in the ground-truth

mask Mg . Now we present our results in three aspects.

Comparing threshold prediction error Other than the

BEAS approach, a local threshold method calculating a

threshold for each pixel, we expect the other approaches

to estimate a threshold value for each testing patch that is

closer to the ground-truth threshold Tg . We show the mean

and standard deviation of the threshold prediction error et in

Table 2. Note that the BEAS approach cannot be reported

in this table, and its similarity score of the segmentation

mask will be presented later. From Table 2, we see that the

error is the smallest for our approach in all three datasets

while Huang ranks the second. On the other hand, both ME

and Yen show least suitability to our datasets. We show

the predicted threshold values of all these algorithms on 18
testing patches of 35PDMS+Cuts in Fig. 5. On the same

18 patches, we also perform an unpaired t-test for each ap-

proach to compare its threshold with the ground truth. We
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Figure 6: Comparison of similarity scores S on 35PDMS+Cuts (left), 10PDMS+Stretch (middle), and Plastic+Cuts (right).

obtain a t-value of 7.09 for our approach whereas for Huang

the t-value is 20.56, hence showing a higher similarity of

our results with the ground truth.

Comparing similarity score In this section, we compare

our estimated segmentation mask to the ground-truth mask,

since this is a more direct evaluation of the segmenation

accuracy than the threshold prediction error. The compari-

son of similarity scores S in Fig. 6 shows that the resultant

masks obtained from our approach are most similar to the

ground truth. Considering a confidence interval of 95%, the

mean similarity scores of our approach on 35PDMS+cuts,

10PDMS+stretch, and Plastic+cuts are 0.98±0.008, 0.95±
0.013, and 0.95±0.046 respectively, whereas the BEAS ap-

proach ranks the second with the respective mean similarity

scores of 0.85 ± 0.032, 0.88 ± 0.016, and 0.86 ± 0.030
for the aforementioned three datasets. Furthermore, our

method appears to have the minimal variation in similar-

ity scores among all methods, which is a favorable property

well reflecting the stability of our segmentation algorithm

on diverse cell images. Figure 7 shows examples of the seg-

mentation mask obtained from the best two algorithms.

Comparing results of datasets It is important to see how

all the algorithms perform on different datasets. We can

relate this study to the discussion on the characteristics of

the image data presented in Sec. 3.1 and thus develop in-

sights regarding the overall performance of algorithms. Ta-

ble 2 shows high errors for all the algorithms on the Plastic

dataset, while the errors are mostly the lowest for 10PDMS.

Similarly the average value of similarity scores for all the

results is the highest for 10PDMS with a value of 0.484,

whereas this value is the lowest for Plastic with 0.379. This

can be related to the fact that the Plastic data also has the

highest values for both cell-pixel variance and background-

pixel variance, as shown in Table 1. On the other hand, these

variances are the lowest for the 10PDMS dataset, which is

also consistent with the fact that the threshold prediction er-

rors of 10PDMS are the lowest.

4.3. High Level Analysis and Segmentation
High level analysis of cell images, such as orientation

or density based studies, can be significantly affected by

the accuracy of image segmentation results. Even slightly

better segmentation performance of one technique over the

other can provide very different results in high level anal-

ysis. Hence, given our accurate segmentation, we consider

our approach to be an enabling tool for high level cell anal-

ysis. To elucidate our point, the 4th row of Fig. 7 clearly

shows that some unwanted dark regions are obtained with

the BEAS approach, which are hard to be removed by post

processing. This can happen whenever a method does not

perform well in cell segmentation. If automatic density

based study or orientation based analysis is performed on

such masks, the results of such studies can be significantly

erroneous. Therefore, for a truthful high level analysis, it

is imperative to first achieve highly accurate cell segmenta-

tion, as demonstrated in our proposed approach.

5. Conclusion and Future Work
It is commonly believed that the success of high level cell

analysis heavily depends on the accuracy of cell segmenta-

tion. Therefore, this paper aims to design an accurate cell

segmentation model for the challenging images obtained

under diverse experimental conditions. We evaluate the effi-

cacy of our approach on three MSC image datasets obtained

under the influence of three different sets of culture surface

and mechanical stimuli. Comparison with previous meth-

ods shows the superiority of our approach. Our approach is

the outcome of a thorough analysis of the different sets of

MSC images and the discovery of the discriminative feature

such as the rate of rise of the intensity distribution.

One next step is to fuse the patch-based segmentation

into a segmentation mask for an entire cell image. Also

we will utilize our accurate segmentation to design an au-

tomatic tool for high level cell analysis, such as studying

the distribution of cell orientation in response to different

mechanical stimuli. Furthermore, the generalization of our

approach to other applications is also our future goal.
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[22] J. Sauvola and M. Pietikäinen. Adaptive document image binariza-

tion. Elsevier-PR, 33(2):225–236, 2000.

[23] I. Seroussi, D. Veikherman, N. Ofer, S. Yehudai-resheff, and

K. Keren. Segmentation and tracking of live cells in phase-contrast

images using directional gradient vector flow for snakes. J. of Mi-
croscopy, 247(2):137–146, 2012.

[24] A. G. Shanbhag. Utilization of information measure as a means of

image thresholding. Elsevier-CVGIP, 56(5):414–419, 1994.

[25] S. Wang, X. Qu, and R. C. Zhao. Clinical applications of mesenchy-

mal stem cells. J. Hematol. Oncol., 5(19):1–9, 2012.

[26] A. Wiliem, Y. Wong, C. Sanderson, P. Hobson, S. Chen, and B. C.

Lovell. Classification of human epithelial type 2 cell indirect im-

munofluoresence images via codebook based descriptors. WACV,

pages 95–102, 2013.

[27] F. Xu, T. Beyazoglu, E. Hefner, U. A. Gurkan, and U. Demirci. Au-

tomated and adaptable quantification of cellular alignment from mi-

croscopic images for tissue engineering applications. Tissue Engi-
neering Part C: Methods, 17(6):641–649, 2011.

[28] F. Yang, M. A. Mackey, F. Ianzini, G. Gallardo, and M. Sonka. Cell

segmentation, tracking, and mitosis detection using temporal context.

In MICCAI, pages 302–309. 2005.

[29] F. Yang, M. A. Mackey, F. Ianzini, G. M. Gallardo, and M. Sonka.

Segmentation and quantitative analysis of the living tumor cells us-

ing large-scale digital cell analysis system. In Proc. SPIE, Medical
Imaging, volume 5370, pages 1755–1763, 2004.

[30] J.-C. Yen, F.-J. Chang, and S. Chang. A new criterion for automatic

multilevel thresholding. IEEE T-IP, 4(3):370–378, 1995.

[31] L. Zhang, L. C. Seitz, A. M. Abramczyk, L. Liu, and C. Chan.

camp initiates early phase neuron-like morphology changes and late

phase neural differentiation in mesenchymal stem cells. Cellular and
Molecular Life Sciences, 68(5):863–876, 2011.


