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ABSTRACT

Human animation is a challenging domain in computer animation.
To aim at many shortcomings in conventional techniques, this
paper proposes a new video based human animation technique.
Given a clip of video, firstly human joints are tracked with the
support of Kalman filter and morph-block based match in the
image sequence. Then corresponding sequence of three-dimension
(3D) human motion skeleton is constructed under the perspective
projection using camera calibration and human anatomy
knowledge. Finally a motion library is established automatically
by annotating multiform motion attributes, which can be browsed
and queried by the animator. This approach has the characteristic
of rich source material, low computing cost, efficient production,
and realistic animation result. We demonstrate it on several video
clips of people doing full body movements, and visualize the
results by re-animating a 3D human skeleton model.
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1. INTRODUCTION

Computer technique has entered many domains of society and
become the focus of people's attention. In the area of art,
computer has begun to aid animator and given birth to computer
animation since 1960's. For decades of years, researchers have
been exploring an easy, effective way to fabricate computer
animation for its wide application prospective. Now, no matter
whether in children cartoon or in films such as TIANTIC, people
can experience the realistic vision flavor, which is brought by
computer animation. The representation of human body and its
motion is the most challenging domain in computer animation.
This paper will propose a new video based human animation
technique.

1.1 Conventional techniques
The conventional human animation is also named as joint
animation where the joint motion can be controlled by forward

kinematics or inverse kinematics. Forward kinematics can acquire
the position of several related body parts by specifying the joint
rotation angle. Inverse kinematics can compute the position of
middle joints by specifying the ending joint position. Although it
is easier than the former, its solution cost will be expensive with
the increase of complexity. We can see that not only the fussy
work of animator, but also a large computation cost is needed in
joint animation. Because this approach is just a simulation of real
human motion, it always lacks of reality.

In contrast to joint animation, the motion capture based animation
is becoming increasingly popular. An actor performs the desired
motion, and a set of devices is used to record the body's joint
configuration. This data is mapped onto a 3D human model stored
in the computer. Though this technique can result in more realistic
human motion than the former, the process of motion capture
usually costs much time and money. Sometimes it should be done
inside a studio. Sometimes magnetic sensors are wired to the actor,
which greatly restricts the free movements and results in
unrealistic motion.

1.2 Our approach

With regard to many shortcomings in conventional techniques, we
try to bring forward an efficient, economical and motion
unrestricted human animation technique. Inspired by the research
of motion analysis in computer vision, a video based human
animation technique is proposed in this paper. Given a clip of
video, we can acquire 3D human motion information and
construct an entry of motion library. Then an animator can utilize
the existing motion information to re-animate the data or create
new data. In particular, we will show how to:

®  Acquire the sequence of 2D human motion skeleton by
tracking human joint with the support of motion prediction
and the color model of body part.

®  Use the correspondences between 3D model and 2D image
to calibrate camera, and construct the sequence of 3D
human motion skeleton under the perspective projection
using the pinhole model and the human anatomy knowledge.

®  Establish motion library by annotating multiform motion
attribute automatically.

The architecture of video based human animation is shown in
figure 1. The contents in three dashed boxes are the focuses listed
above. In contrast to motion capture based animation, our
approach does not require any markers, or sensors to be attached
to human joint, which ensures the free motion of human. Except
for the video recording, it does not cost anything. It is easy and
straightforward from a user's point of view. In order to get the
sequence of 3D human skeleton, the animator only needs to mark
the joint in the first frame of video and the computer does the rest.



On the other hand, any video clip, whether it is a film or any
historical shot, can be our material, which means that its source is
much wider than that of motion capture. In contrast to joint
animation, this approach has a low computation cost, yet with a
more realistic human motion instead. It also frees the animator
from tedious routine.
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Figure 1. The architecture of video based human animation

The paper is organized as follows. Section 2 reviews the
techniques of human motion analysis in computer vision. Section
3 introduces the human model used in our approach. The human
feature tracking of image sequence and the construction of 3D
human motion skeleton are detailed in section 4 and 5
respectively. Section 6 introduces how to construct motion library
automatically. Section 7 shows the experiment results. Finally we
give the conclusions and future directions.

2. A BRIEF SURVEY

In the computer vision domain, many researchers have made great
efforts in analyzing and recognizing human motion in a video.
The video may be shot by one single camera or by several cameras
from different viewpoints simultaneously. Their approaches
usually follow three steps: 1) feature extraction in video frames,
such as body part segmentation, joint detection and identification,
2) correspondence between the features of every frame, 3)
recovery of 3D human structure and motion from feature
correspondences. O'Rouke and Badler[12] conducted 3D human
motion analysis by mapping the input images to a volumetric
model. The systems of Hogg[6],Rohr[11] were specialized to a
one-degree-of-freedom walking model. Edge and line features
were extracted from images and matched to a cylindrical 3D body
model. Chen and Lee[5] used 17 line segments and 14 joints to
represent the human skeleton model. Various constraints were
imposed on the basic analysis of the gait. Bharatkumar et al.[3]
also used stick figures to model the lower limbs of the human
body. Their goal was to construct a general model for gait analysis
in human walking. Akita[2] focused on the model-based motion
analysis for real image sequence. A key frame sequence of stick
figures indicated the approximate order of the motion and spatial
relationships between the body parts. Bregler and Malik[4]
recovered the 3D human motion information under the

orthographic projection by marking the body segments in an
initial frame. For the special complexity of human motion, the
existing research methods laid much limitation on human, such as
a uniform and quiescent background, parallelism of human
motion direction to the image plane, and skintight clothing of
human[1].

From the view of motion analysis, our approach removes many
restrictions as in the previous approaches. For example, it does
not aim at a given human motion mode. Rather, it analyzes large
motion from frame to frame in complex, variational background,
and finally sets up a 3D human skeleton model under the
perspective projection. Then this model can be used in many
applications such as human animation, virtual reality in which a
3D scene is needed.

3. THE HUMAN MODEL

The basic idea is to regard the 3D human body as an articulated
object[1], which consists of rigid parts connected by joints. For
example, the upper limb is composed of two rigid parts, the up
arm and the low arm, which are connected by the elbow. Thus we
simplify the human motion to the motion of skeleton and result in
a 3D human skeleton model as show in figure 2.a. It contains 16
joints, which are named 3D feature points in this paper. In our
approach, we first use rigid constraints between the 3D feature
point, which means that the length of each line in the 3D model
remains constant. Furthermore, from anthropometric data we
know that the length of each line is fractions of body height. So
the constraint about length proportion of each line can also be
added to our algorithm.

Head

Figure 2. The human model: (a) a 3D skeleton model (left) (b)
a 2D block model (right)

This paper names the projected point of a 3D feature point as a 2D
feature point. When the 3D human model is projected, the space
relationship of each line in this model is consistent. But the
projective line in the image plane may have a scale change. In the
tracking of 2D image sequence, block is used to represent the
projection of body part in image plane (see figure 2.b) for there is
much color information on the body part. The middle line of each
block is the skeleton after projection. It divides a corresponding
block into two small blocks of equal area. After we mark each
joint in the first frame, we may get the color model of each block
in this frame. Then, if the new position of each block in the
subsequent frames can be found, we will get human skeleton
sequence on the image plane. Because of the high reliability of
user marking, feature extraction is actually combined with feature



correspondence into one step, i.e. finishing the feature
correspondence during the course of tracking feature point.
Having got this skeleton sequence, we can get 3D human motion
information using computer vision technique.

4. FEATURE TRACKING

Because there is little self-occlusion on the human head, its color
information can be acquired easily. After the head block is tracked,
one feature point of trunk, the neck, is also fixed. So, beginning
with head, we track every body part from top to bottom. Now we
detail the tracking of head, trunk and limb respectively.

4.1 Head

For every frame in the sequence, the head may move toward any
directions in the next frame. If a local search mode is used, the
result may be not global optimal. If a global search mode is used,
it suffers low efficiency. So what we adopt is the combination of
these two. To reduce the search area of head point in the next
frame, we introduce Kalman filter based global motion model to
predict the motion of head point. Then in order to fix on the head
accurately, we select a search path to do morph-block based match
around the predicted point.

4.1.1 Kalman filter

Regarding the sequence of motion images as a dynamic system[9],
the head point can be described by the following equation:

P=P’ +1 (1)

The coordinate P=(x,y)” is the tracked head point. P/ is the
actual coordinate. 7 is a 2D gaussian random noise with mean
value 0 and covariance R. We use thrice polynomial to represent
the motion trajectory of point P. The state vector is defined as

S=(P,P",P") 2)

where P’ =(x " ,y’ )" ,and x’ ,y’ represent the velocity of
point P in the X, directions respectively. P 7 =(x .,y 7 )", where
x”,y” represent the acceleration of point P in the X, Y directions

respectively. The state equation is defined as
Stkt1)=F «Sk) + G = n(k) 3)
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K=0,1,2,... represents the serial number of the frame, /,is a 2X2
unit matrix, 0, is a 2X2 zero matrix, and 7 is the time interval
between frames. n(k)=( n.(k),n(k) ) describes the acceleration
noise in the x,y directions. Suppose n(k) conform to the gaussian
distribution with even 0 and covariance Q. This state equation
shows that P is doing varied-acceleration linear motion in all the
x,y directions. In practice, we track the coordinate of point P, i.e.
X(k)=p(k). So the measurement equation is:

X(k)y=H - S(k) + n(k) “
where H=[1,,0,,0,] is a 2 X6 matrix. In the above conditions, we
get the recursive equations of kalman filter as follows:
®  State vector prediction equation:

Sy’ =F S8, ®)

®  State vector covariance prediction equation:

P,/ =F+Py, " FT+G -0 -G (6)
®  Kalman filter gain matrix:

Ky=P,/ *H «(H-P,' +H +R)’ (7
®  State vector covariance update equation:

Pi=P,  -K,*(H*P,’ *H +R) K.’ ®)
®  State vector update equation:

S =8 +K Xe-H *S;”) ©)]

Kalman filter consists of initialization, prediction and update. The
flow chat is shown in figure 3. Our experiments show that using
kalman filter to predict the head point has a good performance.
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Figure 3. The flow chart of Kalman filter

4.1.2 Morph-block based match
We have applied the kalman filter to predict the possible position
of head point in the next frame. Then in order to fix on the head
accurately, we choose a search path (figure 4) to do morph-block
based match around the predicted point.
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Figure 5. Two feature morph-blocks

Figure 4. Search path

Because we have known the head and the neck point in the first
frame, the height (m) of the head block is the distance between
these two points and the proportion of height to width (n) can be
acquired in anatomy. The color information of m Xn pixels in the
block is saved as the color model for the matching of subsequent
frames. Since the head block in the image is the projection of
human head, the head motion will change the shape of projection.
For example, the head block becomes larger which is likely to
happen when human is moving toward the camera. So, the block
match must be processed between morph-blocks. For this, we
propose a weighted morph-block similarity algorithm based on
subpixel.

Define a feature morph-block A={(x,y),m,n, ¢ }(see figure 5),
where (x,y) is the intersection of one side and the middle line, m is
the height of block A4, n is the width of block, and ¢ is the angle



between the middle line and X axis. Now there are a reference
block A={(x,y),m,n, ¢} and a comparative block 4 ~ ={(x ’,

y’ )ym’ ,n’, 07 }. To calculate their similarity, we use the
algorithm as follows:

1. IfmXn<m’ Xn’ , Then row=m, column=n; Else
row=m "’ , column=n";

2. In block 4 we depict column and row pieces of gridding
lines evenly in the direction of arctg ¢ and arctg(-1/ 0)
respectively. The intersection of any two gridding lines is
named as subpixel Xj;( 0 <i<m, 0<j<n ). Then we use
quadric linear interpolation to compute the color of every
subpixel, X;[Red], X[ Green], X;[Blue].

3. In block 4~ we depict column and row pieces of gridding
lines evenly in the direction of arctg ¢ / and arctg(-1/ 0 ')
respectively. Then we use linear interpolation to compute
the color of every subpixel, X; " [Red], X;’ [Green], X;’
[Blue].

4.  Calculate:
diffy;= Wg * |Xy[Red]-X; " [Red]|
+ W * |X;[Green]-X; ’ [Green]|

+ Wy * |X;[Blue]- X; ' [Blue]| (10)
S=1/(Wie YdiffitW:ee Y diff) (11)
(i, )t (@i,))h2

where Wy, W, Wy represent the weight of each element in RGB,
bl,b2 represent the two regions divided in block, and W, W,
represent the weight of each region in the whole block. In the case
of the head, we define the center region as b/ and the marginal
region as b2, respectively:

i, /)06l If m/4<i<(3/4m AND n/4<;<(/4n

i, j)0b2 (12

Otherwise

Here we have W;>W, This weighted morph-block similarity
measure is based on the observation that the marginal region of
head has a more salient change of color in motion, however the
center region has a relative small change. S is used to represent
the similarity of two morph-blocks.

Note that the 3D human skeleton of frame #-/ has already been
established when human joint is tracked in frame 7. Now we
introduce how to predict the initial height of head block in frame ¢
using the 3D human motion. The model of projected image height
of head is illustrated in figure 6. A is the actual height of head in
the 3D human model, f'is the focal length of the camera, and O is
the optical center of the camera. A point (x,y,) in frame ¢ is related
to point (X,Y,Z,) in the 3D camera coordinate system by
xoy)=(X; *f/Z,Y,; *f/Z,), where Z, is the distance of the head from
the camera in frame ¢. Thus we have:

h=H }f/Z, (13)
where 7, is the height of head in frame ¢ Assume the head is

approaching or moving away from the camera at a locally constant
velocity V, i.e.

Z,=Z,+V-T (14)

Using (14) to substitute Z, in (13), we may get the initial height 4,
in frame 7.

For a frame sequence, we define the tracked head block in current
frame as a reference block 4, and the head block in the next frame
as a comparative block 4 7 . @ 7 is set in the range of [ ¢-4 0,
0+ A 0]. By the previous prediction algorithm we get an
estimated height of the head /, and set m ” in the range of [h,- Am,
h,+ Am]. Since the height and width of head zoom in proportion,
n’ is set in [h(n/m)-(n/m) Am, h(n/m)+(n/m) Am). Starting from
the predicted point, for every point (x,y) on the search path, we
form several block 4 * by {(xy),m’ ,n’, ¢’ } and calculate its
similarity with the head block of current frame, 4. The system
records the block 4 © which has the largest similarity. After
finding the largest similarity, the search process will continue
until it does not find a block, which has a larger similarity, on the
search path of next one circle. If does, repeat the process
mentioned in the last sentence. In the end, the last recorded 4~ is
the head block in the next frame. And for the self adaptability of
color model, linear weight is utilized to update the color model[8].
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Figure 6. Prediction of the Head Height
4.2 Trunk and limb

The tracking of trunk and limb also depends on the above
algorithm. But we must pay attention to other two problems.
Firstly, because of the large limb motion from frame to frame, we
introduce a prediction mechanism to estimate the possible limb
position in the next frame. As the example of thigh, the relative
angle from knee to hip is preserved for every frame. While doing
prediction, we calculate the average value of such angles in the
previous two frames, use it as the initial angle ¢ 7, and fix on
6’ in the scope of [ 0 /-4 0, 8/ + A #]. Our experiment
shows that this prediction mechanism can reduce the search area
of block match for the large motion. Secondly, we show how to
deal with self-occlusion in the tracking of limb. For example,
there is relative small similarity in the block match of an up limb
when in one frame the trunk occluded that up limb. But the
similarity will be larger as soon as the occlusion disappears in one
subsequent frame. According to this, the similarity S is also
defined as the reliability of block match. In the block match
process of frame sequence, the reliability of every limb match is
preserved. If there are one or several low reliability frames
between two relative high ones, we use the joint coordinate of
high ones to obtain the joint of low ones by linear interpolation.
Our experiment shows that it can deal with self-occlusion to a
certain degree and optimize the tracking performance.

5. CONSTRUCTION OF 3D HUMAN
MOTION SKELETON

To establish the sequence of 3D human motion skeleton under the
perspective projection, we must first acquire the camera parameter,
i.e. camera calibration in computer vision. This paper uses
Newton method to solve this problem by the correspondences




between 3D model and 2D image. Then we calculate the
coordinate of the 3D feature point on the human model using the
pinhole model and the proportion knowledge of human skeleton.
In the frame sequence, the assumption of motion continuity is
applied to eliminate the ambiguity of 3D motion information
effectively.

5.1 Linear model based camera calibration

As shown in Figure 7, consider two coordinate systems,
0,X,Y,Z,and O.X.Y.Z.. The former is an object space coordinate
system in which the 3D feature points are located. Thus P,, is a
point in this coordinate system with coordinate (X,,Y,,Z,). The
camera is referenced to the camera coordinate system O .X.Y.Z,. In
particular, we assume that the image plane is perpendicular to the
O.Z, axis and at location Z,=f. Point coordinate on the image
plane is obtained by the perspective projection and denoted by
P(u,v). Thus every point P, in O,X,,Y,Z, can be translated to (,v)
on the image plane with two transformations. Firstly, O.X.Y.Z, is
obtained by a rotation R and translation ¢ of the coordinate system
0,X,Y,Z,. The 3D coordinate of P, is related to that of P, by

HX“ H W™ H (15)

cO=ROW» O—-tO

I

Secondly, through the prospective projection, the projective point
of P. is at P whose coordinate is given by

(”’V):Ef.XCzc’f.Y%ﬁ (16)
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Figure 7. Projective transformation

Our goal in camera calibration is to determine R and ¢ when some
corresponding features between 3D human model and 2D image
plane are given. In the above two equations, it is difficult to
calculate the partial derivative of u,v to unknown parameters. So
we transform them into

F'H HH (17)

o¥' o= RO¥v O

#H Bd

(u’v):BfoXJer’f-Y +DyH (18)
0Z'+ Dz Z'+ Dz O

The meaning of R in the above equation is the same as that of
equation (15). We substitute translation ¢ with Dx,Dy,Dz. p " is a
3D point with coordinate (X = Y ’ ). These two
representations are equivalent when ¢ and Dx, Dy, Dz are related by:

t=R Ve [-Dx(Z+Dz)/ f,~-DWZ'+Dz)/ f,~Dz]" (19)

This paper represents rotate parameter R by a rotative vector,
w.w, W), whose direction is equal to that of rotative axis and
whose module is equal to the rotative angle. Now the projective
parameter may be represented by a vector, (Dx,Dy,Dz, Wx, Wy, Wz)
and the partial derivative of u,v to them can be calculated
expediently. We use corresponding feature lines between 3D
human model and image plane to calculate projective parameters.
We define the equation of a line, with a point (u,v) on it, by:

u -+ ! v=d (20)

- m
\/ m?+1 \/ m?+1
where d is the perpendicular distance from the origin to that line,
and m is the line slope. From (20) we can get the partial derivative
of d to u,v. Combining with previous calculation, the partial
derivative of d to Dx,Dy,Dz, Wx, Wy, Wz will be obtained. After that,
we may use Newton method to calculate a revisional vector,
h=[ ADx, ADy, ADz, AWx, AWy, AWrz].

This method is details as follows. Firstly, beginning with the
initial values of projective parameters, (Dx, Dy, Dz, Wx, Wy, Wz), let
the 3D model project to the image plane according to the current
parameters. Secondly, calculate the error between the projective
line and the feature line on the image plane, which results in the
following equation:

O £t O\ Oz O gy O oy SF & wrz=Ed Q1)
0Dx oDy 0Dz oWx oWy
where Ed is the perpendicular distance from the end points of a
2D feature line to the projective line. Because there are two end
points on one line, we can get two equations such as (21) for one
pair of corresponding feature lines. So given three pairs of such
lines, six equations will form a linear equation group. Its solving
will lead to the revisional vector 4. Then 4 is added to current
projective parameters for revising projective parameters. Thus, we
may solve the linear equation group again. All the Ed values in
that equation group will be smaller than a predefined threshold
after several iterations, which means that the six projective
parameters have been obtained.

There are at least three pairs of corresponding lines needed in
Newton method. In the human model, we choose the line between
left and right shoulders, and the two lines between the chest and
two shoulders. These three lines constitute a steady isosceles
triangle of human up trunk. This choice is based on the
observation that this triangle should not morph-itself in human
motion under most situations. In the below description, each
feature object of this triangle is named as a key joint, key line, or
key triangle. In the first frame, the projection of key joints on the
image plane is known by manual marking. The key joint position
in the object space coordinate is specified by our system. As long
as the proportion of each key line accords with the anatomy, we
can always find the location and orientation of camera in the
object space coordinate system and let the perspective projection
of key triangle superpose with the up triangle of trunk on the
image plane.

5.2 Construction of 3D human skeleton

corresponding to the first frame

From the above work, six projective parameters have been
obtained. Now corresponding to the first frame, except for three
key joints, all the other 3D feature points of human model are not
determined yet. The next step is to acquire the 3D feature point



coordinate P.(X,, Y, Z.) of human model corresponding to a known
2D feature point coordinate, P(u,v). As known from the pinhole
model, to link the optical center and a projected point will get a
radial, on which all the points project on the same point in the
image plane. In order to locate the 3D feature point on this radial,
we begin with a known neighboring point p and use the
knowledge of human skeleton length /en to find a point, the
distance from which to p is equal to len.

Now we detail our algorithm by the example of inferring unknown
right elbow point P, from known neighboring point, the right
shoulder point P.” . The coordinate of right elbow point in the
camera coordinate system is (X, Y, Z.). (u,v) is the coordinate of
P. in the image plane. There is an equation as follow:

d(Pc",Pc) =Len (22)

where d(P,’ ,P,) represents the distance between P.” and P..
Len is the up limb length in the 3D human model. By combining
(22) with (16), we can get an equation, which has only one
variable, Z.. This equation can visualize as a line intersected with
a sphere with center P, ” and radius Len(see figure 9). According
to three possibilities, intersection, tangency and apartion, of a
space line intersected with a sphere, the solution of this equation
has also three cases:

1. Two solutions. It means there are two possible positions for
the elbow point. This ambiguity in the course of modeling
from 2D to 3D is caused by this ill-posed problem itself.
Two methods are used to eliminate the ambiguity. Firstly,
we can utilize diversified human anatomy constraints. For
example, the low arm can not extend backward when the up
arm extends forward. Secondly, brightness information may
be used. In the two solutions, one is always close to the
optical center of camera and the other is far. We make an
assumption that an image region, which is closer to the
optical center, has a relative higher brightness. We choose a
small region around the feature point on the shoulder and
the elbow respectively, turn the RGB color model to HLS
model for every pixel in these two regions, and calculate the
mean values of L weight for two regions. If the value of
elbow is larger than that of shoulder, we select the solution
closer to the optical center, and otherwise we select the
farther one. Our experiment shows that the combination of
these two methods can eliminate the ambiguity effectively.

2. One solution. From it, we may get a unique point, which is
just the position of 3D right elbow point.

3. No solution. There are two reasons: one is the tracking error
of 2D feature point, the other is that the skeleton proportion
of this person does not accord with the ordinary anatomy.
The system will adjust the skeleton length for renewal
computation.
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[L_Shoulder |»] L Elbow |-p| L Wrist |
Neck |3 Head |
RHip [» RKnee [ -p| R Ankle |
LHip | L Knee [ L Ankle |

Figure 8. The solution order of 3D feature point

Pelvis

Now, with the solution order from center to margin shown in
figure 8, we can get all the 3D feature point coordinates of the
human model in turn.

5.3 Construction of 3D human skeleton

corresponding to the subsequent frames

In the last subsection, we have constructed the 3D human motion
skeleton for the first frame. In fact, as soon as the coordinates of
three human key joints for every frame are known, the
corresponding 3D human model can be obtained by the algorithm
introduced in 5.2. Now we discuss how to determine the
coordinates of three key joints in the subsequent frames|[7].

Given the key joint coordinates, P;"(X;",Y;",Z;") (i =1~3), of frame
n in the camera coordinate system, let us calculate the
corresponding key joint, P (X" ¥/, 2" )(i=1~3), of frame
n+1. The corresponding 2D feature point in the image plane is
(U1 v, The relation of P/ and (U, V") can be
described as
o+l ° Z'"” V'”H ° Z'”H

Pjrwl - ! f 4 , i f i ,Zi”” E(zl~3) (23)
As mentioned in section 3, the skeleton length in the human
model remains constant, which means:

d(Bn,Pjn)=d(Bn+1,f)jn+1)(i;j:1~3)ANDi<>j (24)
Using (23) to substitute P,""' and P/ in (24), we will get a
nonlinear equation group, which has three variables and may be

solved by the grads method. Thus, we obtained the key joint
coordinates of frame n+1 in the camera coordinate system.

Then the algorithm mentioned in 5.2 is used to calculate all the
3D feature points in the human model corresponding to frame
n+1. Here a key assumption is made: the human motion has the
property of continuity. While the ambiguity appears, we calculate
the distances of the two solutions to the 3D feature point of frame
n respectively and select the solution with a smaller distance. Our
experiment shows that this method has excellent performance.
The continuity and authenticity are embodied in the long sequence
of human motion. In the example of figure 9, there are two
possible positions, P/ and P2, while locating the right elbow
point corresponding to frame n+1. From the dashed line in figure
9 we know that the right elbow point in frame 7 is P’ . Thus we
select PI as the right elbow point of frame n+/ for it is closer to
point P’ .

Oc >
Xe

Image plane

The key triangle
corresponding

cdmesponding to frame n+l1

L F

Figure 9. Ambiguity elimination in the subsequent frames



6. ESTABLISH MOTION LIBRARY
AUTOMATICALLY

From the works of previous two sections, the 3D human motion
information has been obtained. To support the animator with this
information, we should establish a motion library, which contains
diversified motion information. But at present this information
only manifests as the coordinate of every human joint in the 3D
space. While establishing library, we expect that not only these
coordinates, but also various descriptions about motion
information, such as motion type, initial position, motion space,
etc, should be preserved in the entry of library. Having these
descriptions, the animator can browse and query the motion
library by the key word of these annotations. Apparently it is very
useful for the animator to comprehend and utilize the motion
knowledge in library.

Here this type of entry with motion annotation in natural language
is accomplished by our system automatically. Natural language
provides a large dictionary of movement-related terms. These
terms are commonly used to define movements and their attributes;
different forms of the same movement are distinguished by
specifying different attributes related to a motion verb. We
propose a motion grammar to classify motion in library based on
[10]. This grammar has the goal of providing a multi-dimension,
qualitative and quantitative description of human motion in
natural language terms, and does not intend to be an exhaustive
dictionary for human motion description. Additional entries may
be added, following the general classification scheme. The motion
grammar is detailed as:

--The symbol ::= represent Definition.
--The symbol | represent Or-
--Tokens in symbol <> are non-terminal symbols of the grammar.

--Tokens starting with an upper case letter are terminal symbols of
the grammar.

<action>::=<initialPosition><motion><finalPosition>

<initialPosition>::=Erect | Stooped | Knelt | Supine | Seated |
Others

<finalPosition>::=Erect | Stooped | Knelt | Supine | Seated | Others

<motion>::=<transition> <qualitativeAspects> | <locomotion>
<space> <time>

<transition>::=Raise | Fall | Sit | Lag | Stoop | Kneel | Others
<qualitativeAspects>::= Slowly | Suddenly

<locomotion>::=Walk | Jump | Descend | Ascend | Hop | Run |
Others

<space>::= <Direction> <Trajectory> <Gradient>
<direction>::= Forward | Backward | Left | Right
<trajectory>::= Straight | Zig_zag

<gradient>::= Horizontal | Vertical | Ascending | Descending

<time>::= <speed> <acceleration>

<accelerationData>

<speedData>

<speed>::= Slow | Fast
<acceleration>::=Constant | Accelerating | Decelerating

The meaning of some terms are:

®  initialPosition and finalPosition : verbs represent the start
and end posture of human motion respectively.

®  transition : verbs imply that human motion has not any
displacement, but just an onsite transition from an initial
posture to a final posture, for example, “Stoop”.

® [ocomotion : verbs specifying a spatial displacement from
an initial position to a final position, for example, “Walk”.

®  qualitativeAspects are attributes specifying the way in which
a motion is performed, for example, “Sit slowly”.

® space and time attributes relate to the description of
locomotion.

®  speed is the description of motion speed and acceleration,
where speedData and accelerationData are two quantitative
description of the speed attribute. As known from the
pinhole model, if the human model is two times farther
away from the image plane, but twice as big, and translated
at twice the speed, we would get exactly the same two
images. Therefore, if we suppose that the height of human
model is 17.5 CM and the motion speed is 1 CM/Sec, the
motion speed will be 1 M/Sec when the actual human height
is 1.75 M. The motion speed of human model can be
calculated by the speed of pelvis point. Thus, while
establishing the motion library, we calculate the quantitative
speed and acceleration and add them to library as motion
attributes.

Now we will show how to determine the entries in grammar. In
the example of “initialPosition”, we define several angles
according to 3D human skeleton model.

® 0 (Pelvis):= The projective angle of the pelvis skeleton to
the plane of hip triangle.

® 0 (Knee):= The angles from the left and right thigh skeleton
to the respective shin skeleton.

® 0 (Ankle):= The angles from the left and right shin skeleton
to the OZX-plane in the camera coordinate system.

® 0 (Thigh):= The angles from the left and right thigh
skeleton to the OZX-plane in the camera coordinate system.

The “initialPosition” of human skeleton can be determined by the
decision tree shown in figure 10.

f(Pelvis)~180

FALSE

<90< §(Pelvis)<150
TRU SE

Fp

‘ Stooped ‘ ‘ Others ‘

Figure 10. Decision tree

In this figure, the symbol = represents equality approximately. In
practice, we use a threshold to control it. For example, ¢ (Pelvis)



290 is equal to 90-w< ¢ (Pelvis)<90+w and w=20. It can be
seen that this is a production system, which utilizes a combination
of several qualifications to deduce the motion attribute. Other
attributes’ deduction is similar to this one. For example, if the
ankle point has not space displacement, the motion is in the
category of “transition”. The attribute of “Direction” can be
known from the change of X and Z coordinate values of pelvis
point. At last, we obtain a section of natural language description
composed by various attributes in grammar.

7. EXPERIMENT RESULTS

Based on the above algorithms, we have implemented a demo
system, Video Based Human Animation(VBHA), using Visual
C++ and Open-GL on personal computer. VBHA can construct 3D
human skeleton sequence and establish motion library
automatically. We apply it to video recordings in our lab and a
video clip of actor’s dancing in MASK.

The video recordings in our lab were done with a single camera.
Figure 11 shows one example sequence of a human sitting down
on a chair seen from an oblique view. In the top row, the 16
feature points on the first image are marked by the user with the
mouse. After the hand-initialization we applied the program to a
sequence of 25 image frames. We could successfully track all
body joints in the video sequence. The other five frames of the top
row are the 5th, 10th, 15th, 20th and 25th frame of the clip
respectively. At the same time, VBHA construct the sequence of
3D human skeleton under the perspective projection. We define a
virtual camera to simulate the camera used in practice. In the
middle row, we show six images of constructed skeletons, which
are shot in the same viewpoint as the top ones. Then we rotate the
camera right with 30° , shoot six frames corresponding to the top
ones, and show them in the bottom row. As you see, the motion
continuity and authenticity are embodied in this sitting sequence,

which proves the robustness of algorithm in ambiguity elimination.

It means now we can see the person sit down from a more oblique
view. At last, annotation of this motion entry is described as
follows by VBHA automatically:

®  initialPosition: Erect

® transition: Sit

®  qualitativeAspects: Slowly
®  finalPosition: Seated

In figure 12 we show an example of a human walking toward the
camera. The five frames of the top row are the 1st, 5th, 17th, 23th
and 41th frame of the clip respectively. The initialization and the
meaning of the middle row are the same as before. But in the
bottom tow, we show the skeletons when the virtual camera is
posed from various viewangles. These five images are shot by the
camera rotating left 15° |, right 45° | right 30° , left 60° and left
30° respectively. In this case, the human body has an obvious
scale change on the image plane. Here our height prediction and
morph-block similarity algorithm take effect and result in a good
performance in the tracking of 41 frame sequence. For this motion
entry, VBHA annotate it with:

®  initialPosition: Erect

®  locomotion: Walk

®  space: Forward Straight Horizontal
® time: Slow 0.8M/Sec Constant 0

As shown in figure 13, the last experiment material is a video clip
from the film MASK with a length of 2 second ( 48 frames ). In
the top row these five ones are the 1st, 5th, 17th, 26th, 39th frame
of the clip respectively. If you have seen this film, you must know
that this actor dances very fast. So here our motion prediction
algorithm helps us to track every body part, especially the low
limb in the sequence. In the middle row, we show images, which
are shot in the same viewpoint as the top ones. In the bottom row,
these five images are shot by the camera rotating right 30° , left
30° , right 15° | left 15° and left 150° respectively. These two
rows reflect the various motion configurations vividly. For this
motion entry, VBHA annotate it with:

®  initialPosition: Erect

®  locomotion: Others

®  space: Left Straight Horizontal
® time: Slow 0.5M/Sec Constant 0

For more information of our experiment results, please visit:
http://icad.zju.edu.cn/~liuxm/animation.html.

8. CONCLUSIONS

This paper has presented a video based human animation
technique. Given a clip of video, we can acquire 3D human
motion information and construct an entry of motion library. Then
an animator can utilize the existing motion information and
produce a new human animation. This approach has the
characteristic of rich source material, low computing cost,
efficient production, and realistic animation result.

It is challenging to animate realistic human motion. Our
contribution to this problem is that we open up a huge resource of
archived human movement captured on video for use by 3D
computer animators, and propose the basic algorithms for this
animation technique. With this approach, any video clip, whether
it is a film or any historical shot, such as Charlie Chaplin's
walking and Karl Lewis' running, can be the source material,
which means the animator can utilize much more motion
information than before. It is easy and straightforward from a
user's point of view. Just to mark the joints of the first frame, he
will see the animated human motion from any viewangle. On the
other hand, from the viewpoint of motion analysis, this approach
does not pose any restrictions on human motion. Rather, it
analyzes large motion from frame to frame in complex, variational
background, and finally sets up a 3D human skeleton model under
the perspective projection, which make it possible to construct a
3D scene for the animation. To the best of our knowledge, this is
the first demo system that is able to process such a challenging
task and recover complex human motion with high accuracy.

From the experiment, we found the tracking performance will be
weakened if there are too much self-occlusion on the human body.
So, our future work will concentrate on utilizing more knowledge
of 3D human skeleton motion to guide the 2D feature tracking and
adding some feedbacks from the animator. As we see, as soon as
the mapping of video to model is obtained, a lot of work may be
carried out based on it. One of such work is rendering the model
using another new video. What we are planning to do is a virtual
Chaplin, who may simulate any gesture that real Chaplin has
performed in the video.
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Figure 11. The human body’s sitting down: The top row shows tracked
frames, the middle row shows constructed 3D human skeletons in the Figure 12. The human body’s walking: The top row shows
same viewpoint, and the bottom row shows the skeletons from right tracked frames, the middle row shows constructed 3D

30" viewangle.

human skeletons in the same viewpoint, and the bottom
row shows the skeletons from various viewangles.



Figure 13. The experiment of MASK: The top row shows tracked frames, the middle row shows constructed 3D human skeletons,
and the bottom row shows the skeletons from various viewangles.



